[1] 陈跃良. 海军飞机结构腐蚀控制及强度评估[M]. 北京:国防工业出版社, 2009. CHEN Y L. Corrosion control and strength evaluation of naval aircraft structure[M]. Beijing:National Defense Industry Press, 2009(in Chinese).
[2] 许宏良, 殷苏民. 基于改进BP神经网络优化的管道腐蚀速率预测模型研究[J]. 表面技术,2018, 47(2):177-181. XU H L, YIN S M. Prediction model of pipeline corrosion rate based on improved bp neural network[J]. Surface Technology,2018, 47(2):177-181(in Chinese).
[3] 向乃瑞, 闫海, 王炜, 等. GA-BP神经网络预测金属腐蚀速率[J]. 电力学报, 2018, 33(1):48-54. XIANG N R, YAN H, WANG W, et al. Prediction of metal corrosion rate based on GA-BP neural network[J]. Journal of Electric Power, 2018, 33(1):48-54(in Chinese).
[4] 孟遂民, 向乃瑞, 黄力. 基于PSO-LSSVM的拉线棒腐蚀预测[J]. 腐蚀与防护, 2020, 41(1):23-28. MENG S M, XIANG N R, HUANG L. Anchor rod corrosion prediction based on PSO-LSSVM[J]. Corrosion & Protection, 2020, 41(1):23-28(in Chinese).
[5] JIMENEZCOME M J, TURIAS I J, RUIZAGUILAR J J, et al. A comprehensive approach based on SVM to model pitting corrosion behaviour of EN 1.4404 stainless steel[J]. Materials and Corrosion, 2014, 65(10):1024-1032.
[6] 曹楚南. 中国材料的自然环境腐蚀[M]. 3版. 北京:化学工业出版社, 2008:43-46. CAO C N. Natural environment corrosion of Chinese materials[M]. 3rd ed. Beijing:Chemical Industry Press, 2008:43-46(in Chinese).
[7] SNIHIROVA D, HÖCHE D, LAMAKA S, et al. Galvanic corrosion of Ti6Al4V-AA2024 joints in aircraft environment:Modelling and experimental validation[J]. Corrosion Science, 2019,157:70-78.
[8] WABER J T, FAGAN B. Mathematical studies on galvanic corrosion. 4. influence of electrolyte thickness on the potential and current distributions over coplanar electrodes using polarization parameters[J]. Journal of the Electrochemical Society, 1956,103(1):64-72.
[9] WABER J T. Mathematical studies on galvanic corrosion.1.coplanar electrodes with negligible polarization[J]. Journal of the Electrochemical Society, 1954,101(6):271-276.
[10] WABER J T, MORRISSEY J, RUTH J. Mathematical studies on galvanic corrosion. 5. calculation of the average value of the corrosion current parameter[J]. Journal of the Electrochemical Society, 1956,103(3):C68.
[11] WABER J T. Mathematical studies of galvanic corrosion.3.semi-infinite coplanar electrodes with equal constant polarization parameters[J]. Journal of the Klectrochemical Society, 1955, 102(7):420-429.
[12] 王佳. 液膜形态在大气腐蚀中的作用[M]. 北京:化学工业出版社:2017:68-69. WANG J. The role of liquid film morphology in Atmospheric Corrosion[M]. Beijing:Chemical Industry Press,2017:68-69(in Chinese).
[13] 陈跃良, 黄海亮, 张勇, 等. 不同液膜厚度下电偶腐蚀当量折算研究[J]. 材料导报, 2018, 32(9):1571-1576. CHEN Y L, HUANG H L, ZHANG Y, et al. Study on equivalent conversion of galvanic corrosion under different liquid film thickness[J]. Materials Review, 2018, 32(9):1571-1576(in Chinese).
[14] 陈跃良, 黄海亮, 卞贵学, 等. 多电极偶接对金属大气腐蚀影响的试验与仿真[J]. 航空学报, 2018, 39(6):421751. CHEN Y L, HUANG H L, BIAN G X, et al. Test and simulation of effects of multi-electrode coupling on atmospheric corrosion of metals[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6):421751(in Chinese).
[15] LEE J. Numerical analysis of galvanic corrosion of Zn/Fe interface beneath a thin electrolyte[J]. Electrochimica Acta, 2006, 51(16):3256-3260.
[16] THEBAULT F, VUILLEMIN B, OLTRA R, et al. Modeling bimetallic corrosion under thin electrolyte films[J]. Corrosion Science, 2011, 53:201-207.
[17] JENÍĆEK V, PAZDEROVÁ M, DIBLÍKOVÁ L. Polarization curves scanned in a thin layer of electrolyte as the input data for galvanic corrosion simulation[J]. Koroze a Ochrana MateriÁlu, 2013, 57(3):64-68.
[18] JENÍĆEK V, DIBLÍKOVÁ L. A mathematical model of galvanic corrosion under the conditions of a thin electrolyte film[J]. Acta Polytechnica, 2016, 56(2):106-111.
[19] ZHANG Y, CHEN Y L, FAN W J, et al. Study on the galvanic corrosion of aluminum alloy single bolted lap joints in simulated atmospheres[J]. Materials and Corrosion, 2017, 68(10):1107-1115.
[20] CHEN Y L, HUANG H L, ZHANG Y, et al. A method of atmospheric corrosion prediction for aircraft structure[J]. Materials and Corrosion, 2019, 70(1):79-90.
[21] 陈卓元. 铜的大气腐蚀及其研究方法[M]. 北京:科学出版社, 2011:43-60. CHEN Z Y. Atmospheric corrosion of copper and its research methods[M]. Beijing:Science Press, 2011:43-60(in Chinese).
[22] SIMILLION H, DEN STEEN N V, TERRYN H, et al. Geometry influence on corrosion in dynamic thin film electrolytes[J]. Electrochimica Acta, 2016, 209:149-158.
[23] YOUNG P S. Modeling and analysis for atmospheric galvanic corrosion of fasteners in aluminum[D]. Ohio:University of Akron, 2015.
[24] DESHPANDE K B. Effect of aluminium spacer on galvanic corrosion between magnesium and mild steel using numerical model and SVET experiments[J]. Corrosion Science, 2012, 62:184-191.
[25] MANDEL M, KRüGER L. Determination of pitting sensitivity of the aluminium alloy EN AW-6060-T6 in a carbon-fibre reinforced plastic/aluminium rivet joint by finite element simulation of the galvanic corrosion process[J]. Corrosion Science, 2013, 73:172-180.
[26] CHEN Y L, HUANG H L, ZHANG Y, et al. A finite element model (FEM) for predicting the corrosion of multi-material coupling system on aircrafts[J]. Materials and Corrosion, 2018, 69(11):1649-1657.
[27] CROSS S R, GOLLAPUDI S, SCHUH C A. Validated numerical modeling of galvanic corrosion of zinc and aluminum coatings[J]. Corrosion Science, 2014, 88:226-233.
[28] KING A D, LEE J S, SCULLY J R. Finite element analysis of the galvanic couple current and potential distribution between Mg and 2024-T351 in a Mg rich primer configuration[J]. Journal of the Electrochemical Society, 2016, 163(7):C342-C356.
[29] BOTTE V, MANSUTTI D, PASCARELLI A. Numerical modeling of iron corrosion due to an acidic aqueous solution[J]. Applied Numerical Mathematics, 2005, 55(3):253-263.
[30] MURER N, OLTRA R, VUILLEMIN B, et al. Numerical modelling of the galvanic coupling in aluminium alloys:A discussion on the application of local probe techniques[J]. Corrosion Science, 2010, 52:130-139.
[31] YAN J F, NGUYEN T V, WHITE R E, et al. Mathematical modeling of the formation of calcareous deposits on cathodically protected steel in seawater[J]. Journal of the Electrochemical Society, 1993, 140(3):733-742.
[32] HOCHE D. Simulation of corrosion product deposit layer growth on bare magnesium galvanically coupled to aluminum[J]. Journal of the Electrochemical Society, 2015, 162(1):C1-C11.
[33] DESHPANDE K B. Validated numerical modelling of galvanic corrosion for couples:Magnesium alloy (AE44)-mild steel and AE44-aluminium alloy (AA6063) in brine solution[J]. Corrosion Science, 2010, 52:3514-3522.
[34] WILDER J W, CLEMONS C, GOLOVATY D, et al. An adaptive level set approach for modeling damage due to galvanic corrosion[J]. Journal of Engineering Mathematics, 2015, 91(1):121-142.
[35] THAMIDA S K. Modeling and simulation of galvanic corrosion pit as a moving boundary problem[J]. Computational Materials Science, 2012, 65:269-275.
[36] MAI W J, SOGHRATI S. New phase field model for simulating galvanic and pitting corrosion processes[J]. Electrochimica Acta, 2018, 260:290-304.
[37] GIEßGEN T, MITTELBACH A, HÖCHE D, et al. Enhanced predictive corrosion modeling via randomly distributed boundary conditions[J]. Materials and Corrosion, 2018, 69(12):1720-1728.
[38] SHAIK L A, THAMIDA S K. Surface evolution of a corroding metal as a moving boundary problem by random assignment of anodic and cathodic sites[J]. Journal of Electroanalytical Chemistry, 2016, 780:264-270.
[39] JIN Y, LAI Z G, BI P, et al. Combining lithography and capillary techniques for local electrochemical property measurements[J]. Electrochemistry Communications, 2018, 87:53-57.
[40] ZHANG G A, YU N, YANG L Y, et al. Galvanic corrosion behavior of deposit-covered and uncovered carbon steel[J]. Corrosion Science, 2014, 86:202-212.
[41] CHEN Y, LIU C, ZHOU J, et al. Multiaxial fatigue behaviors of 2024-T4 aluminum alloy under different corrosion conditions[J]. International Journal of Fatigue, 2017, 98:269-278.
[42] DEROSE J A. Aluminium alloy corrosion of aircraft structures:modelling and simulation[M]. Southampton:WIT Press, 2013.
[43] PALANI S. Modelling of galvanic corrosion on hybrid structures in aircraft[D]. Brussels:Université Libre de Bruxelles, 2013.
[44] LIU C, RAFLA V, SCULLY J R, et al. Mathematical modeling of potential and current distributions for atmospheric corrosion of galvanic coupling in airframe components[C]//NACE International, 2015.
[45] 刘道新. 材料的腐蚀与防护[M]. 西安:西北工业出版社, 2006:128-130. LIU D X. Corrosion and protection of materials[M]. Xi'an:Northwest Industrial Press, 2006:128-130(in Chinese).
[46] SHARLAND S M, TASKER P W. A mathematical model of crevice and pitting corrosion-I. The physical model[J]. Corrosion Science, 1988, 28(6):603-620.
[47] WALTON J C. Mathematical modeling of mass transport and chemical reaction in crevice and pitting corrosion[J]. Corrosion Science, 1990, 30(8-9):915-928.
[48] SHARLAND S M. A mathematical model of the initiation of crevice corrosion in metals[J]. Corrosion Science, 1992, 33(2):183-201.
[49] SUN W, WANG L, WU T, et al. An arbitrary Lagrangian-Eulerian model for modelling the time-dependent evolution of crevice corrosion[J]. Corrosion Science, 2014, 78:233-243.
[50] DUDDU R, KOTA N, QIDWAI S M, et al. An extended finite element method based approach for modeling crevice and pitting corrosion[J]. Journal of Applied Mechanics, 2016, 83:081003-1-081003-10.
[51] XIAO Z H, HU S Y, LUO J L, et al. A quantitative phase-field model for crevice corrosion[J]. Computational Materials Science, 2018, 149:37-48.
[52] LI L, LI X, DONG C, et al. Computational simulation of metastable pitting of stainless steel[J]. Electrochimica Acta, 2009, 54:6389-6395.
[53] GUSEVA O, DEROSE J A, SCHMUTZ P. Modelling the early stage time dependence of localised corrosion in aluminium alloys[J]. Electrochimica Acta, 2013, 88:821-831.
[54] SUTER T, BÖHNI H. Microelectrodes for corrosion studies in microsystems[J]. Electrochimica Acta, 2001, 47:191-199.
[55] ANDREATTA F, FEDRIZZI L. The use of the electrochemical micro-cell for the investigation of corrosion phenomena[J]. Electrochimica Acta, 2016, 203:337-349.
[56] ZHU J Y, XU L N, FENG Z C, et al. Galvanic corrosion of a welded joint in 3Cr low alloy pipeline steel[J]. Corrosion Science, 2016, 111:391-403.
[57] BIRBILIS N, BUCHHEIT R G. Electrochemical characteristics of intermetallic phases in aluminum alloys an experimental survey and discussion[J]. Journal of the Electrochemical Society, 2005, 152(4):B140-B151.
[58] BIRBILIS N, BUCHHEIT R G. Investigation and discussion of characteristics for intermetallic phases common to aluminum alloys as a function of solution pH[J]. Journal of the Electrochemical Society, 2008, 155(3):C117-C126.
[59] SVDHOLZ A D, KIRKLAND N T, BUCHHEIT R G, et al. Electrochemical properties of intermetallic phases and common impurity elements in magnesium alloys[J]. Electrochemical and Solid-State Letters, 2011, 14(2):C5-C7.
[60] DESHPANDE K B. Numerical modeling of micro-galvanic corrosion[J]. Electrochimica Acta, 2011, 56:1737-1745.
[61] XIAO J, CHAUDHURI S. Predictive modeling of localized corrosion:an application to aluminum alloys[J]. Electrochimica Acta, 2011, 56:5630-5641.
[62] ABODI L C, DEROSE J A, VAN D S, et al. Modeling localized aluminum alloy corrosion in chloride solutions under non-equilibrium conditions:steps toward understanding pitting initiation[J]. Electrochimica Acta, 2012, 63:169-178.
[63] YIN L, JIN Y, LEYGRAF C, et al. A FEM model for investigation of micro-galvanic corrosion of Al alloys and ef-fects of deposition of corrosion products[J]. Electrochimica Acta, 2016, 192:310-318.
[64] WANG Y, YIN L, JIN Y, et al. Numerical simulation of micro-galvanic corrosion in Al alloys:Steric hindrance effect of corrosion product[J]. Journal of the Electrochemical Society, 2017, 164(14):C1035-C1043.
[65] YIN L, JIN Y, LEYGRAF C, et al. Numerical simulation of micro-galvanic corrosion in Al alloys:Effect of geometric factors[J]. Journal of the Electrochemical Society, 2017, 164(2):C75-C84.
[66] YIN L, JIN Y, LEYGRAF C, et al. Numerical simulation of micro-galvanic corrosion of Al alloys:Effect of chemical factors[J]. Journal of the Electrochemical Society, 2017, 164(13):C768-C778.
[67] SCHEINER S, HELLMICH C. Finite volume model for diffusion and activation-controlled pitting corrosion of stainless steel[J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198:2898-2910.
[68] MAI W J, SOGHRATI S, BUCHHEIT R G. A phase field model for simulating the pitting corrosion[J]. Corrosion Science, 2016, 110:157-166.
[69] ANSARI T Q, XIAO Z H, HU S Y, et al. Phase-field model of pitting corrosion kinetics in metallic materials[J]. Computational Materials, 2018, 4(1):1-9.
[70] CHEN Z, BOBARU F. Peridynamic modeling of pitting corrosion damage[J]. Journal of the Mechanics and Physics of Solids, 2015, 78:352-381.
[71] DE M D, OTERKUS E. Finite element implementation of a peridynamic pitting corrosion damage model[J]. Ocean Engineering, 2017, 135:76-83.
[72] CHEN Z, ZHANG G, BOBARU F. The influence of passive film damage on pitting corrosion[J]. Journal of the Electrochemical Society, 2016, 163(2):C19-C24.
[73] BREWICK P T, KOTA N, LEWIS A C, et al. Microstructure-sensitive modeling of pitting corrosion:Effect of the crystallographic orientation[J]. Corrosion Science, 2017, 129:54-69.
[74] KOTA N, QIDWAI S M, LEWIS A C, et al. Microstructure-based numerical modeling of pitting corrosion in 316 stainless steel[J]. ECS Transactions, 2013, 50(31):155-164.
[75] 钟群鹏, 赵子华. 断口学[M]. 北京:高等教育出版社, 2006. ZHONG Q P, ZHAO Z H. Fractography[M]. Beijing:Higher Education Press, 2006(in Chinese).
[76] MACDONALD D D, LU P C, URQUIDI M M, et al. Theoretical estimation of crack growth rates in type 304 stainless steel in boiling-water reactor coolant environments[J]. Corrosion, 1996, 52(10):768-785.
[77] PALINLUC T, PÉREZMORA R, BATHIAS C, et al. Fatigue crack initiation and growth on a steel in the very high cycle regime with sea water corrosion[J]. Engineering Fracture Mechanics, 2010, 77(11):1953-1962.
[78] CERIT M, GENEL K, EKSI S. Numerical investigation on stress concentration of corrosion pit[J]. Engineering Failure Analysis, 2009, 16(7):2467-2472.
[79] LU B T, LUO J L, NORTON P R, et al. Effects of dissolved hydrogen and elastic and plastic deformation on active dissolution of pipeline steel in anaerobic groundwater of near-neutral pH[J]. Acta Materialia, 2009, 57:41-49.
[80] HUANG Y H, TU S T, XUAN F Z. Modeling and simulation of pit chemistry of 304 austenitic stainless steel under applied stress in sodium chloride solution[J]. Nuclear Engineering and Design, 2013, 257:45-52.
[81] TANG X, CHENG Y F. Micro-electrochemical characterization of the effect of applied stress on local anodic dissolution behavior of pipeline steel under near-neutral pH condition[J]. Electrochimica Acta, 2009, 54(5):1499-1505.
[82] ZHANG G A, CHENG Y F. Micro-electrochemical characterization of corrosion of pre-cracked X70 pipeline steel in a concentrated carbonate/bicarbonate solution[J]. Corrosion Science, 2010, 52(3):960-968.
[83] XU L Y, CHENG Y F. An experimental investigation of corrosion of X100 pipeline steel under uniaxial elastic stress in a near-neutral pH solution[J]. Corrosion Science, 2012, 59:103-109.
[84] XU L Y, CHENG Y F. Corrosion of X100 pipeline steel under plastic strain in a neutral pH bicarbonate solution[J]. Corrosion Science, 2012, 64:145-152.
[85] PIDAPARTI R M, RAO A S. Analysis of pits induced stresses due to metal corrosion[J]. Corrosion Science, 2008, 50:1932-1938.
[86] GUTMAN E M. Mechanochemistry of solid surfaces[M]. Singapore:World Scientific Publishing Company, 1994.
[87] XU L Y, CHENG Y F. Development of a finite element model for simulation and prediction of mechanoelectrochemical effect of pipeline corrosion[J]. Corrosion Science, 2013, 73:150-160.
[88] XU L Y, CHENG Y F. A finite element based model for prediction of corrosion defect growth on pipelines[J]. International Journal of Pressure Vessels and Piping, 2017, 153:70-79.
[89] WANG Y K, WHARTON J A, SHENOI R A. Mechano-electrochemical modelling of corroded steel structures[J]. Engineering Structures, 2016, 128:1-14.
[90] ADLAKHA I, BAZEHHOUR B G, MUTHEGOWDA N, et al. Effect of mechanical loading on the galvanic corrosion behavior of a magnesium-steel structural joint[J]. Corrosion Science, 2018, 133:300-309.
[91] BAZEHHOUR B G, ADLAKHA I, SOLANKI K N. Role of static and cyclic deformation on the corrosion behavior of a magnesium-steel structural joint[J]. JOM, 2017, 69:2328-2334.
[92] SARKAR S, WARNER J E, AQUINO W. A numerical framework for the modeling of corrosive dissolution[J]. Corrosion Science, 2012, 65:502-511.
[93] SETHIAN J A. A fast marching level set method for monotonically advancing fronts[J]. Proceedings of the National Academy of Sciences, 1996, 93(4):1591-1595.
[94] ONISHI Y, TAKIYASU J, AMAYA K, et al. Numerical method for time-dependent localized corrosion analysis with moving boundaries by combining the finite volume method and voxel method[J]. Corrosion Science, 2012, 63:210-224.
[95] SOGHRATI S, MAI W J, LIANG B, et al. A boundary collocation meshfree method for the treatment of Poisson problems with complex morphologies[J]. Journal of Computational Physics, 2015, 281:225-236.
[96] BELYTSCHKO T, GRACIE R, VENTURA G. A review of extended/generalized finite element methods for material modeling[J]. Modelling and Simulation in Materials Science and Engineering, 2009, 17(4):1-31.
[97] CHESSA J, SMOLINSKI P, BELYTSCHKO T. The extended finite element method (XFEM) for solidification problems[J]. International Journal for Numerical Methods in Engineering, 2002, 53(8):1959-1977.
[98] DUDDU R. Numerical modeling of corrosion pit propagation using the combined extended finite element and level set method[J]. Computational Mechanics, 2014, 54(3):613-627.
[99] STAHLE P, HANSEN E. Phase field modelling of stress corrosion[J]. Engineering Failure Analysis, 2015, 47:241-251.
[100] MAI W J, SOGHRATI S. A phase field model for simulating the stress corrosion cracking initiated from pits[J]. Corrosion Science, 2017, 125:87-98.
[101] NICKERSON W C, IYYER N, LEGG K, et al. Modeling galvanic coupling and localized damage initiation in airframe structures[J]. Corrosion Reviews, 2017, 35:205-223.
[102] DE BORST R. Challenges in computational materials science:Multiple scales, multi-physics and evolving discontinuities[J]. Computational Materials Science, 2008, 43(1):1-15.