Dissertation

Load distribution for space robots after target capture

  • ZHOU Yiqun ,
  • LUO Jianjun ,
  • WANG Mingming
Expand
  • 1. Research&Development Institute, Northwestern Polytechnical University, Shenzhen, Shenzhen 518057, China;
    2. National Key Laboratory of Aerospace Flight Dynamics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2020-02-29

  Revised date: 2020-03-23

  Online published: 2020-05-21

Supported by

Science, Technology and Innovation Commission of Shenzhen Municipality (JCYJ20190806154412671); National Natural Science Foundation of China (61973256, 61690211);Innovation Fundation for Doctor Dissertation of Northwestern Polytechnical University (CX202001)

Abstract

This paper proposes a load distribution method of the desired target external force for the multi-arm space robot after capturing the target in the form of soft-finger contact, which considers both the friction constraint and capability constraint of the manipulators. The dynamic equations of the space robotic system and the target are first constructed as the basis of load distribution. The soft-finger contact model between the end-effector of manipulators and the target surface is then established based on the research of ground robots, while the motion constraint between the two is also obtained. To simplify the optimization calculation, the friction cone constraint is linearized, and the capability constraint of manipulators considering the joint torque limit is established to transform the nonlinear optimization problem of the grasping force planning into a linear one. Finally, the numerical simulation of a dual-arm space robot model shows the effectiveness of the proposed method of load distribution for various forms of target motion.

Cite this article

ZHOU Yiqun , LUO Jianjun , WANG Mingming . Load distribution for space robots after target capture[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(1) : 523915 -523915 . DOI: 10.7527/S1000-6893.2020.23915

References

[1] IMAIDA T, YOKOKOHJI Y, DOI T, et al. Ground-space bilateral teleoperation of ETS-VⅡ robot arm by direct bilateral coupling under 7-s time delay condition[J]. IEEE Transactions on Robotics and Automation, 2004, 20(3):499-511.
[2] NILCHIANI R, HASTINGS D E. Measuring the value of flexibility in space systems:A six-element framework[J]. Systems Engineering, 2007, 10(1):26-44.
[3] 陈罗婧, 郝金华, 袁春柱, 等. "凤凰"计划关键技术及其启示[J]. 航天器工程, 2013, 22(5):119-128. CHEN L J, HAO J H, YUAN C Z, et al. Key technology analysis and enlightenment of phoenix program[J]. Spacecraft Engineering, 2013, 22(5):119-128(in Chinese).
[4] REINTSEMA D, THAETER J, RATHKE A, et al. DEOS-the German robotics approach to secure and de-orbit malfunctioned satellites from low earth orbits[C]//Proceedings of the i-SAIRAS. Sapporo:Japan Aerospace Exploration Agency (JAXA), 2010:244-251.
[5] 王明, 黄攀峰, 孟中杰,等. 空间机器人抓捕目标后姿态接管控制[J]. 航空学报, 2015, 36(9):3165-3175. WANG M, HUANG P F, MENG Z J, et al. Attitude takeover control after capture of target by a space robot[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9):3165-3175(in Chinese).
[6] ALBERTS T E, SOLOWAY D I. Force control of a multi-arm robot system[C]//IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 1988:1490-1496.
[7] WALKER I D, FREEMAN R A, MARCUS S I. Analysis of motion and internal loading of objects grasped by multiple cooperating manipulators[J]. The International Journal of Robotics Research, 1991, 10(4):396-409.
[8] BONITZ R G, HSIA T C. Force decomposition in cooperating manipulators using the theory of metric spaces and generalized inverses[C]//IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 1994:1521-1527.
[9] CHUNG J H, YI B J, KIM W K. Analysis of internal loading at multiple robotic systems[J]. Journal of Mechanical Science and Rechnology, 2005, 19(8):1554-1567.
[10] KUMAR V R, WALDRON K J. Force distribution in closed kinematic chains[J]. IEEE Journal on Robotics and Automation, 1988, 4(6):657-664.
[11] YOSHIKAWA T, NAGAI K. Manipulating and grasping forces in manipulation by multifingered robot hands[J]. IEEE Transactions on Robotics and Automation, 1991, 7(1):67-77.
[12] WILLIAMS D, KHATIB O. The virtual linkage:A model for internal forces in multi-grasp manipulation[C]//IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 1993:1025-1030.
[13] ERHART S, HIRCHE S. Internal force analysis and load distribution for cooperative multi-robot manipulation[J]. IEEE Transactions on Robotics, 2015, 31(5):1238-1243.
[14] NAKAMURA Y, NAGAI K, YOSHIKAWA T. Dynamics and stability in coordination of multiple robotic mechanisms[J]. The International Journal of Robotics Research, 1989, 8(2):44-61.
[15] BUSS M, HASHIMOTO H, MOORE J B. Dextrous hand grasping force optimization[J]. IEEE Transactions on Robotics and Automation, 1996, 12(3):406-418.
[16] 王滨, 李家炜, 刘宏. 机器人多指手的优化抓取力计算[J]. 吉林大学学报(工学版), 2008, 38(1):178-182. WANG B, LI J W, LIU H. Optimal grasping force computation for multi-fingered robot hand[J]. Journal of Jilin University (Engineering and Technology Edition), 2008, 38(1):178-182(in Chinese).
[17] BORGSTROM P H, BATALIN M A, SUKHATME G S, et al. Weighted barrier functions for computation of force distributions with friction cone constraints[C]//IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2010:785-792.
[18] CORNELLA J, SUAREZ R, CARLONI R, et al. Dual programming based approach for optimal grasping force distribution[J]. Mechatronics, 2008, 18(7):348-356.
[19] 陈栋金, 姜力, 王新庆. 多指抓取力的线性组合计算[J]. 哈尔滨工业大学学报, 2013, 45(1):55-59. CHEN D J, JIANG L, WANG X Q. Computation of multi-fingered grasping force with linear combination[J]. Journal of Harbin Institute of Technology, 2013, 45(1):55-59(in Chinese).
[20] 陈金宝, 韩冬, 王小涛, 等. 灵巧机械手多指协调控制技术[J]. 机械工程学报, 2014, 50(5):42-47. CHEN J B, HAN D, WANG X T, et al. Multi-fingered coordinated control for dexterous robotic hand[J]. Journal of Mechanical Engineering, 2014, 50(5):42-47(in Chinese).
[21] 王新庆, 陈栋金, 姜力. 非负线性组合多指抓取动态力优化方法[J]. 广西大学学报(自然科学版), 2015, 40(5):1169-1176. WANG X Q, CHEN D J, JIANG L. Nonnegative linear combination dynamic force optimization of multi-fingered grasp[J]. Journal of Guangxi University (Natural Science Edition), 2015, 40(5):1169-1176(in Chinese).
[22] KERR J, ROTH B. Analysis of multifingered hands[J]. The International Journal of Robotics Research, 1986, 4(4):3-17.
[23] SINHA P R, ABEL J M. A contact stress model for multifingered grasps of rough objects[J]. IEEE Transactions on Robotics and Automation, 1992, 8(1):7-22.
[24] BARKAT B, ZEGHLOUL S, GAZEAU J P. Optimization of grasping forces in handling of brittle objects[J]. Robotics and Autonomous Systems, 2009, 57(4):460-468.
[25] JIA P, WU L, WANG G, et al. Grasping torque optimization for a dexterous robotic hand using the linearization of constraints[J/OL]. Mathematical Problems in Engineering.(2019-11-23)[2020-02-29]. https://doi.org/10.1155/2019/5235109.
[26] CLOUTIER A, YANG J. Grasping force optimization approaches for anthropomorphic hands[J]. Journal of Mechanisms and Robotics, 2018, 10(1):011004.
[27] XIA P C, LUO J J, WANG M M, et al. Constrained compliant control for space robot postcapturing uncertain target[J]. Journal of Aerospace Engineering, 2019, 32(1):04018117.
[28] MEHROTRA, SANJAY. On the Implementation of a primal-dual interior point method[J]. SIAM Journal on Optimization, 1992, 2(4):575-601.
Outlines

/