Electronics and Electrical Engineering and Control

Target threat assessment in air combat based on PCA-MPSO-ELM algorithm

  • XI Zhifei ,
  • XU An ,
  • KOU Yingxin ,
  • LI Zhanwu ,
  • YANG Aiwu
Expand
  • College of Aeronautics Engineering, Air Force Engineering University, Xi'an 710038, China

Received date: 2019-02-26

  Revised date: 2019-03-25

  Online published: 2020-05-21

Supported by

Air Force Engineering University President Fund (XZJK2019040)

Abstract

Target threat assessment is a key link in air combat. Due to the complex and diverse factors affecting the threat assessment of air combat targets and the correlation between the indicators, traditional assessment algorithm cannot obtain accurate and objective assessment results. This paper proposes a target threat assessment algorithm based on a Principal Component Analysis method and an Modified Particle Swarm Algorithm Optimized for Extreme Learning Machines (PCA-MPSO-ELM). Indicators affecting the degree of target threat values were comprehensively analyzed first, followed by linear changes in the original evaluation indicators using the principal component analysis method to obtain comprehensive variables, eliminating the correlation between the evaluation indicators and achieving dimensionality reduction of the evaluation data. On the basis of data pretreatment, the ELM neural network was established and the improved particle swarm algorithm was applied to the optimization of the input weights and threshold values of ELM to improve the accuracy of the target threat assessment model. Finally, air combat data was selected from the air combat maneuvering instrument, and sample data for target threat assessment was constructed using the threat index method. The accuracy analysis and real-time analysis of the assessment were carried out in simulation experiments, and the results showed that the proposed algorithm can achieve accurate and rapid target threat assessment in air combat.

Cite this article

XI Zhifei , XU An , KOU Yingxin , LI Zhanwu , YANG Aiwu . Target threat assessment in air combat based on PCA-MPSO-ELM algorithm[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(9) : 323895 -323895 . DOI: 10.7527/S1000-6893.2020.23895

References

[1] HUMA N, ASIF M. An optimal dynamic threat evaluation and weapon scheduling technique[J]. Knowledge-Based Systems, 201, 23(3):337-342.
[2] 曾守桢, 穆志民. 基于Zhenyuan积分的直觉模糊多属性决策方法[J]. 控制与工程, 2018, 33(3):542-548. ZENG S Z, MU Z M. Method based on Zhenyuan integral for intuitionistic fuzzy multiple attribute decision making[J]. Control and Decision, 2018, 33(3):542-548(in Chinese).
[3] FENG J F, ZHANG Q, HU J H, et al. Dynamic assessment method of air target threat based on improved GIFSS[J]. Journal of Systems Engineering and Electronics, 2019, 30(3):525-534.
[4] 李闯, 端木京顺, 雷英杰, 等. 基于认知图和直觉模糊推理的态势评估方法[J]. 系统工程与电子技术, 2012, 34(10):2064-2068. LI C, DUANMU J S, LEI Y J, et al. Situation assessment based on cognitive maps and intuitionistic fuzzy reasoning[J]. Systems Engineering and Electronics, 2012, 34(10):2064-2068(in Chinese).
[5] XU Y, MIU X. Multi-attribute decision making method for air target threat evaluation based on intuitionistic fuzzy sets[J]. Journal of Systems Engineering and Electronics, 2012, 23(6):891-897.
[6] 夏博龄, 贺正洪, 雷英杰. 基于直觉模糊推理的威胁评估改进算法[J]. 计算机工程, 2009, 35(16):195-197. XIA B L, HE Z H, LEI Y J. Improved algorithm of threat assessment based on intuitionistic fuzzy reasoning[J]. Computer Engineering, 2009, 35(16):195-197(in Chinese).
[7] 李卫忠, 李志鹏, 江洋, 等. 混沌海豚群优化灰色神经网络的空中目标威胁评估[J]. 控制与决策, 2018,33(11):1997-2003. LI W Z, LI Z P, JIANG Y, et al. Air-targets threat assessment using grey neural network optimized by chaotic dolphin swarm algorithm[J]. Control and Decision, 2018, 33(11):1997-2003(in Chinese).
[8] BRYNIELSSON J, ARNBORG S. Bayesian games for threat prediction and situation analysis[C]//7th International Conference on Information Fusion, 2004:1125-1132.
[9] AZIMIRAD E, HADDADNIA J. Target threat assessment using fuzzy sets theory[J]. International Journal of Advances in Intelligent Informatics, 2015, 1(2):57-74.
[10] CHEN D F, FENG Y, LIU Y X. Threat assessment for air defense operations based on intuitionistic fuzzy logic[J]. Procedia Engineering, 2012, 29(4):3302-3306.
[11] MA S D, ZHANG H Z, YANG G Q. Target threat level assessment based on cloud model under fuzzy and uncertain conditions in air combat simulation[J]. Aerospace Science and Technology, 2017, 67:49-53.
[12] QU C W, HE Y. A method of threat assessment using multiple attribute decision making[C]//6th International Conference on Signal Processing, 2002:1091-1095.
[13] LIANG Q, CHENG X. Knowledge-based ubiquitous and persistent sensor networks for threat assessment[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(3):1060-1069.
[14] 王俊, 姜长生. 基于LSRBF神经网络的空战目标威胁评估[J].电光与控制, 2007, 14(4):43-48. WANG J, JIANG C S. Target threat assessment based on LSRBF neural network for air combat[J]. Electronic Optics & Control, 2007, 14(4):43-48(in Chinese).
[15] 邱浪波, 刘作良, 刘明. 一种应用神经网络技术的威胁估计算法[J]. 空军工程大学学报(自然科学版), 2002,3(6):25-28. QIU L B, LIU Z L, LIU M. A threat assessment algorithm by using the neural network techniques[J]. Journal of Air Force Engineering University:Natural Science Edition, 2002, 3(6):25-28(in Chinese).
[16] 王向华, 覃征, 刘宇, 等. 径向基神经网络解决威胁排序问题[J]. 系统仿真学报, 2004, 16(7):1576-1579. WANG X H, QIN Z, LIU Y, et al. RBF neural network for threat sequencing[J]. Journal of System Simulation, 2004, 16(7):1576-1579(in Chinese).
[17] 郭辉, 徐浩军, 刘凌. 基于回归型支持向量机的空战目标威胁评估[J]. 北京航空航天大学学报, 2010, 36(1):123-126. GUO H, XU H J, LIU L. Target threat assessment of air combat based on support vector machines for regression[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(1):123-126(in Chinese).
[18] 王改革, 郭立红, 段红, 等. 基于萤火虫算法优化BP神经网络的目标威胁估计[J]. 吉林大学学报(工学版), 2013, 43(4):1064-1069. WANG G G, GUO L H, DUAN H, et al. Target threat assessment using glowworm swarm optimization and BP neural network[J]. Journal of Jilin University (Engineering and Technology Edition), 2013, 43(4):1064-1069(in Chinese).
[19] 罗艳春, 郭立红, 姜晓莲, 等. 基于模糊神经网络的空中目标威胁评估[J]. 微计算机信息, 2007, 34(23):268-270. LUO Y C, GUO L H, JIANG X L, et al. Threat assessment for aerial target based on fuzzy neural network[J]. Microcomputer Information, 2007, 34(23):268-270(in Chinese).
[20] LAM H K, LAUBER J. Membership-function-dependent stability analysis of fuzzy-model-based control systems using fuzzy Lyapunov functions[J]. Informantion Science, 2013, 232(20):253-266.
[21] HUANG G B, WANG D H, LAN Y. Extreme learning machines:A survey[J]. International Journal of Machine Learning and Cybernetics, 2011, 2(2):107-122.
[22] LAW A, GHOSG A. Multi-label classification using a cascade of stacked autoencoder and extreme learning machines[J]. Neurocomputing, 2019, 358:222-234.
[23] 赵春晖, 胡春梅, 石红. 采用选择性分段PCA算法的高光谱图像异常检测[J]. 哈尔滨工程大学学报(英文版), 2011, 32(1):109-113. ZHAO C H, HU C M, SHI H. Anomaly detection for a hyperspectral image by using a selective section principal component analysis algorithm[J]. Journal of Harbin Engineering University, 2011, 32(1):109-113(in Chinese).
[24] 吕伏, 梁冰, 孙维吉, 等. 基于主成分回归分析法的回采工作面瓦斯涌出量预测[J]. 煤炭学报, 2012, 37(1):113-116. LV F, LIANG B, SUN W J, et al. Gas emission quantity prediction of working face based on principal component regression analysis method[J]. Journal of China Coal Society, 2012, 37(1):113-116(in Chinese).
[25] HUANG G B. An insight into extreme learning machines:random neurons, random features and Kernels[J]. Cognitive Computation, 2014, 6(3):376-390.
[26] HUANG G B, ZHU Q Y, SIEW C K. Real-time learning capability of neural networks[J]. Neurocomputing, 2006, 70:863-878.
[27] LAN Y, SOH Y C, HUANG G B. Ensemble of online sequential extreme learning machine[J]. Neurocomputing, 2009, 72(13):3391-3395.
[28] HUANG G B, DING X J, ZHOU H M. Optimization method based extreme learning machine for classification[J]. Neurocomputing, 2010, 74(1):155-163.
[29] LUO X, CHANG X H, BAN X J. Regression and classification using extreme learning machine based on L-1-norm and L-2-norm[J]. Neurocomputing, 2016, 174:179-186.
[30] QIN Q, FENG Y W, LI F. Structural reliability analysis using enhanced cuckoo search algorithm and artificial neural network[J]. Journal of Systems Engineering and Electronics, 2018, 29(6):1317-1326.
[31] QUAN H,SRINIVASAN D, KHOSRAVI A. Short-term load and wind power forecasting using neural network-based prediction intervals[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(2):303-315.
[32] 顾佼佼, 刘卫华. 基于攻击区和杀伤概率的视距内空战态势评估[J]. 系统工程与电子技术, 2015, 37(6):1306-1312. GU J J, LIU W H. WVR air combat situation assessment model based on weapon engagement zone and kill probability[J]. Systems Engineering and Electronics, 2015, 37(6):1306-1312(in Chinese).
[33] 徐西蒙, 杨任农, 符颖, 等. 基于ELM_AdaBoost强预测器的空战目标威胁评估[J]. 系统工程与电子技术, 2018, 40(8):1760-1768. XU X M, YANG R N, FU Y, et al. Target threat assessment in air combat based on ELM_AdaBoost strong predictor[J].Systems Engineering and Electronics, 2018, 40(8):1760-1768(in Chinese).
[34] ZHANG K, KONG W R, LIU P P, et al. Assessment and sequencing of air target threat based on intuitionistic fuzzy entropy and dynamic VIKOR[J]. Journal of Systems Engineering and Electronics, 2018, 29(2):305-310.
[35] KOJADINOVIC I, MARICHAL J L. Entropy of bi-capacities[J]. European Journal of Operational Research, 2007, 178(1):164-184.
[36] GUO R F, HUANG G B, LIN Q P, et al. Error minimized extreme learning machine with growth of hidden nodes and incremental learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2009,20(8):1352-1357.
[37] 陈洁钰, 姚佩阳, 王勃, 等. 基于结构熵和IGSO-BP算法的动态威胁评估[J]. 系统工程与电子技术, 2015, 37(5):1076-1083. CHEN J Y, YAO P Y, WANG B, et al. Dynamic threat assessment based on structure entropy and IGSO-BP algorithm[J]. Systems Engineering and Electoronics, 2015, 37(5):1076-1083(in Chinese).
[38] 高大文, 王鹏, 蔡臻超. 人工神经网络中隐含层节点数与训练次数的优化[J]. 哈尔滨工业大学学报, 2003, 35(2):207-209. GAO D W, WANG P, CAI Z C. Optimization of hidden nodes and training times in artificial neural network[J]. Journal of Harbin Institute of Technology, 2003, 35(2):207-209(in Chinese).
Outlines

/