Tethered mobile robots can be used to explore extreme terrains such as steep slopes, cliffs, and gullies. During the exploration process, the tethers of the mobile robots will inevitably contact or even wrap around the obstacles. The classic FastSLAM framework does not apply to the Simultaneous Localization and Mapping (SLAM) of tethered robots due to the dependence of the contact points between the obstacles and the robots, and the nonlinearity of the robot model. In this paper, a modified FastSLAM-based algorithm is proposed to solve the SLAM problem of the tethered robot, where an unscented filter and a particle filter are adopted to estimate the positions of the contact points and the pose of the tethered robot, respectively. An unscented transformation on the nonlinear observation model is utilized to simplify the updating of the particle weights. Simulation results show that the proposed approach can effectively localize the contact points and improve the estimation performance of the robot pose.
WANG Xiaotao
,
ZHANG Jiayou
,
WANG Xingbo
,
HAN Liangliang
. Simultaneous localization and mapping algorithm based on FastSLAM framework for tethered robots[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021
, 42(1)
: 523893
-523893
.
DOI: 10.7527/S1000-6893.2020.23893
[1] ABAD-MANTEROLA P. Axel rover tethered dynamics and motion planning on extreme planetary terrain[D]. Pasadena:California Institute of Technology, 2012.
[2] 胡明, 邓宗全, 高海波, 等. 摇臂-转向架式月球探测车越障通过性分析[J]. 上海交通大学学报, 2005, 39(6):928-932. HU M, DENG Z Q, GAO H B, et al. Analysis of climbing obstacle trafficability on the six-wheeled Rocker-Bogie lunar rover[J]. Journal of Shanghai Jiao Tong University, 2005, 39(6):928-932(in Chinese).
[3] WETTERGREEN D, THORPE C, WHITTAKER R. Exploring Mount Erebus by walking robot[J]. Robotics and Autonomous Systems, 1993, 11(3-4):171-185.
[4] BARES J, WETTERNGREEN D. Dante Ⅱ:Technical description, results, and lessons learned[J]. The International Journal of Robotics Research, 1999, 18(7):621-649.
[5] PIRJANIAN P, LEGER C, MUMM E, et al. Distributed control for a modular, reconfigurable cliff robot[C]//IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2002:4083-4088.
[6] HUNTSBERGER T, STROUPE A, AGHAZARIAN H, et al. TRESSA:Teamed robots for exploration and science on steep areas[J]. Journal of Field Robotics, 2010, 24(11-12):1015-1031.
[7] NESNAS I A D, ABAD-MANTEROLA P, EDLUND J A, et al. Axel mobility platform for steep terrain excursions and sampling on planetary surfaces[C]//IEEE Aerospace Conference. Piscataway:IEEE Press, 2008:1-11.
[8] ABAD-MANTEROLA P, EDLUND J, BURDICK J, et al. Axel:A minimalist tethered rover for exploration of extreme planetary terrains[J]. IEEE Robotics and Automation Magazine, 2009, 16(4):44-52.
[9] MCMANUS C, FURGALE P, STENNING B, et al. Lighting-invariant visual teach and repeat using appearance-based lidar[J]. Journal of Field Robotics, 2013, 30(2):254-287.
[10] STENNING B, MCMANUS C, BARFOOT T. Planning using a network of reusable paths:A physical embodiment of a rapidly exploring random tree[J]. Journal of Field Robotics, 2013, 30(6):916-950.
[11] STOETER S A, PAPANIKOLOPOULOS N. Kinematic motion model for jumping scout robots[J]. IEEE Transactions on Robotics, 2006, 22(2):398-403.
[12] KUMAR T R V A, RICHARDSON R C. Tether monitoring techniques for environment monitoring, tether following and localization of autonomous mobile robots[C]//2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE Press, 2008:2109-2114.
[13] KUMAR T R V A, RICHARDSON R C. Entanglement detection of a swarm of tethered robots in search and rescue applications[C]//Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics, 2007:143-148.
[14] RAJAN V A K T, NAGENDRAN A, DEHGHANI-SANIJ A, et al. Tether monitoring for entanglement detection, disentanglement and localisation of autonomous robots[J]. Robotica, 2014, 34(3):527-548.
[15] MURTRA A C, MIRATS J M. IMU and cable encoder data fusion for in-pipe mobile robot localization[C]//IEEE Conference on Technologies for Practical Robot Applications (TePRA). Piscataway:IEEE Press, 2013:1-6.
[16] MCGAREY P, MACTAVISH K, POMERLEAU F, et al. The line leading the blind:Towards nonvisual localization and mapping for tethered mobile robots[C]//IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2016:4799-4806.
[17] THRUN S, FOX D, BURGARD W, et al. Robust Monte Carlo localization for mobile robots[J]. Artificial Intelligence, 2001, 128(1-2):99-141.
[18] DOUCET A, FREITAS J, GORDON N. Sequential Monte Carlo methods in practice[M]. New York:Springer-Verlag, 2001:499-515.
[19] MURPHY K. Bayesian map learning in dynamic environments[C]//The Conference and Workshop on Neural Information Processing Systems, 1999:1015-1021.
[20] MONTEMERLO M, THRUN S, KOLLER D, et al. FastSLAM:A factored solution to the simultaneous localization and mapping problem[C]//Proceedings of the AAAI National Conference on Artificial Intelligence, 2002:593-598.
[21] MCGAREY P, MACTAVISH K, POMERLEAU F, et al. TSLAM:Tethered simultaneous localization and mapping for mobile robots[J]. The International Journal of Robotics Research, 2017, 36(12):1363-1386.
[22] DURRANT-WHYTE H, BAILEY T. Simultaneous localization and mapping:Part I[J]. IEEE Robotics and Automation Magazine, 2006, 13(2):99-110.
[23] TRIGGS B, MCLAUCHLAN P F, HARTLEY R I, et al. Bundle adjustment-A modern synthesis[C]//International Workshop on Vision Algorithms, 1999:298-372.
[24] GRISETTI G, STACHNISS C, BURGARD W. Improved techniques for grid mapping with Rao-Blackwellized particle filters[J]. IEEE Transactions on Robotics, 2007, 23(1):34-46.