Fluid Mechanics and Flight Mechanics

Numerical simulation of mixed phase icing on two-dimensional airfoil

  • BU Xueqin ,
  • LI Hao ,
  • HUANG Ping ,
  • LIN Guiping
Expand
  • School of Aeronautic Science and Engineering, Beihang University, Beijing 100083, China

Received date: 2020-04-13

  Revised date: 2020-04-28

  Online published: 2020-05-14

Supported by

National Science and Technology Major Project of China (2017-VIII-0003-0114); the Fundamental Research Funds for the Central Universities (YWF-20-BJ-J-732)

Abstract

In recent years, the problem of aircraft icing caused by ice crystals has attracted wide attention. For the mixed phase (ice crystals and supercooled droplets coexisting) icing problem, the numerical simulation method is used to predict the ice shape. The transition Shear-Stress Transport (SST)turbulence model is adopted in the calculation of air flow field and convective heat transfer. The ice crystal and droplet collection coefficients are calculated based on the Eulerian method. Based on the classical Messinger icing model, the heat and mass transfer process on a two-dimensional surface under the mixed phase icing condition is analyzed, and the icing thermodynamic model suitable for the mixed phase icing is established. Meanwhile, considering the adhesion effect of ice crystals, an empirical formula of adhesion efficiency is added. The mixed phase icing thermodynamic model is solved based on FLUENT and its User Defined Function (UDF). The rime ice and glaze ice conditions are simulated on NACA0012 airfoil. The computational results are compared with foreign wind tunnel experimental results and show agreement. The results show that the effect of ice crystal adhesion has a significant influence on the amount and the shape of ice. Ice accumulation tends to be wedge-shaped under glaze ice condition.

Cite this article

BU Xueqin , LI Hao , HUANG Ping , LIN Guiping . Numerical simulation of mixed phase icing on two-dimensional airfoil[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(12) : 124085 -124085 . DOI: 10.7527/S1000-6893.2020.24085

References

[1] TRAN P, BRAHIMI M T, PARASCHIVOIU I, et al. Ice accretion on aircraft wings with thermodynamic effects[J]. Journal of Aircraft, 1995, 32(2):444-446.
[2] OZGEN S, CAMBEK M. Ice accretion simulation on multi-element airfoils using extended Messinger model[J]. Heat Mass Transfer, 2009, 45:305-322.
[3] NILAMDEEN S, HABASHI W, MARTIN A, et al. FENSAP-ICE:Modeling of water droplets and ice crystals:AIAA-2009-4128[R]. Reston:AIAA, 2009.
[4] MASON J G, STRAPP J W, CHOW P. The ice particle threat to engines in flight:AIAA-2006-206[R]. Reston:AIAA, 2006.
[5] MASON J G, CHOW P, FULEKI D M. Understanding ice crystal accretion and shedding phenomenon in jet engines using a rig test[J]. Journal of Engineering for Gas Turbines and Power, 2011, 133(4):041201.
[6] OLIVER M J. Validation ice crystal icing engine test in the propulsion systems laboratory at NASA Glenn Research Center:AIAA-2014-2898[R]. Reston:AIAA, 2014.
[7] GOODWIN R V, DISCHINGER D G. Turbofan ice crystal rollback investigation and preparations leading to inaugural ice crystal engine test at NASA PSL-3 test facility:AIAA-2014-2895[R]. Reston:AIAA, 2014.
[8] BAUMERT A, BANSMER S E, BACHER M. Implementation of an innovative ice crystal generation system to the icing wind tunnel braunschweig[J]. Foundations of Systems Biology, 2013, 175(1-2):1.
[9] MANUEL R, CHO Y. Analysis of ice crystal ingestion as a source of ice accretion inside turbofans:AIAA-2008-4165[R]. Reston:AIAA, 2008.
[10] WRIGHT W, JORGENSON P, VERES J. Mixed phase modeling in GlennICE with application to engine icing:AIAA-2010-7674[R]. Reston:AIAA, 2010
[11] HABASHI W G, NILAMDEEN S. Multiphase approach toward simulating ice crystal ingestion in jet engines[J]. Journal of Propulsion & Power, 2015, 27(5):959-969.
[12] NORDE E, VAN D W E T A, HOEIJMAKERS H W M. Eulerian method for ice crystal icing[J]. AIAA Journal, 2018, 56(1):222-234.
[13] ZHANG L F, LIU Z X, ZHANG M H. Numerical simulation of ice accretion under mixed-phase conditions[J]. Proc IMechE Part G:Aerospace Engineering, 2016, 230(13):2473-2483.
[14] 袁庆浩, 樊江, 白广忱. 航空发动机内部冰晶结冰研究综述[J]. 推进技术, 2018, 39(12):2641-2650. YUAN Q H, FAN J, BAI G C. Review of ice crystal icing in aero-engines[J]. Journal of Propulsion Technology, 2018, 39(12):2641-2650(in Chinese).
[15] 姜飞飞, 董威, 郑梅, 等. 冰晶在涡扇发动机内相变换热特性[J]. 航空动力学报, 2019, 34(3):567-575. JIANG F F, DONG W, ZHENG M, et al. Phase change heat transfer characteristic of ice crystal ingested into turbofan engine[J]. Journal of Aerospace Power, 2019, 34(3):567-575(in Chinese).
[16] MESSINGER B L. Equilibrium temperature of an unheated icing surface as a function of air speed[J]. Journal of the Aeronautical Sciences, 1953, 20(1):29-42.
[17] BERGMAN T L, LAVINE A S, INCROPERA F P, et al. Fundamentals of heat and mass transfer[M]. 7th ed. New York:John Wiley & Sons, 2011:416-417.
[18] WRIGHT W B. Users manual for the improved NASA Lewis Ice Accretion Code LEWICE 1.6[R]. Washington, D.C.:NASA,1995.
[19] AL-KHALIL K, IRANI E. Mixed-phase icing simulation and testing at the cox icing wind tunnel:AIAA-2003-0903[R]. Reston:AIAA, 2003.
[20] PAN H, RENDER P M. Impact characteristics of hailstones simulating ingestion by turbofan aeroengines[J]. Journal of Propulsion and Power, 1996, 12(3):457-462.
[21] HIGA M, ARAKAWA M, MAENO N. Measurements of restitution coefficients of ice at low temperatures[J]. Planetary and Space Science, 1996, 44(9):917-925.
[22] HIGA M, ARAKAWA M, MAENO N. Size dependence of restitution coefficients of ice in relation to collision strength[J]. Icarus, 1998, 133(2):310-320.
[23] BAUMERT A, BANSMER S, TRONTIN P, et al. Experimental and numerical investigations on aircraft icing at mixed phase conditions[J]. International Journal of Heat and Mass Transfer, 2018, 123:957-978.
[24] TRONTIN P, BLANCHARD G, VILLEDIEU P. A comprehensive numerical model for mixed phase and glaciated icing conditions:AIAA-2016-3742[R]. Reston:AIAA, 2016.
[25] CURRIE T, FULEKI D, MAHALATTA A. Experimental studies of mixed-phase sticking efficiency for ice crystal accretion in jet engines:AIAA-2014-3049[R]. Reston:AIAA, 2014.
[26] 杨胜华, 林贵平, 申晓斌. 三维复杂表面水滴撞击特性计算[J]. 航空动力学报, 2010, 25(2):284-290. YANG S H, LIN G P, SHEN X B. Water droplet impingement prediction for three-dimensional complex surfaces[J]. Journal of Aerospace Power, 2010, 25(2):284-290(in Chinese).
[27] CLIFT R, GAUVIN W H. The motion of particles in turbulent gas streams[C]//Proceedings of the Chemeca'70, 1970:14-28.
Outlines

/