Fluid Mechanics and Flight Mechanics

Atomization characteristics of impinging liquid jets coupled with forced perturbation

  • LI Jia'nan ,
  • LEI Fanpei ,
  • YANG Anlong ,
  • ZHOU Lixin
Expand
  • 1. Key Laboratory of Science and Technology on Liquid Rocket Engine, Xi'an Aerospace Propulsion Institute, Xi'an 710100, China;
    2. China State Shipbuilding Corporation Limited, Beijing 100097, China

Received date: 2020-03-27

  Revised date: 2020-04-13

  Online published: 2020-05-14

Supported by

National Basic Research Program of China (613193)

Abstract

To comprehensively grasp the working characteristics of impinging jet injectors and further understand the role atomization plays in combustion instability, the unsteady atomization characteristics of impinging jet injectors coupled with forced perturbation are investigated experimentally and computationally. For the experiment, pressure perturbations in the feed pipe are generated by a hydro-mechanical pulsator, pressure fluctuations are recorded by pulsating pressure transducers, and backlit images of dynamic atomization field are captured by high-speed camera. For the simulation, based on open-source software Gerris, atomization processes coupled with forced perturbations are simulated by setting a periodically varying velocity inlet. The ability of the established numerical schemes to simulate the unsteady atomization process is first validated. Secondly, the natural atomization process is compared with forced atomization, and the atomization characteristics of impinging liquid jets coupled with forced perturbations are analyzed. Finally, the effects of perturbation frequency and amplitude on impinging jet atomization are investigated. Results revealed that for impinging jet atomization coupled with forced perturbations, arc-shaped groups of droplets accumulate in the atomization field which exhibits periodical characteristics. The frequency of atomization is consistent with that of forced perturbations. Within the frequency range (1 257-3 563 Hz) in this study, the atomization process always responds to pressure perturbations. The perturbation frequency mainly affects the distance between adjacent arc-shaped droplet groups and the phase relation between atomization field and oscillating pressure field, while the perturbation amplitude mainly affects the strength of Klystron effect. With the amplitude increasing, the breakup length of the liquid sheet decreases, and the mass flow rate downstream of the impingement point changes from linear pattern to non-linear one, that is, from sinusoidal waves to steep-fronted waves.

Cite this article

LI Jia'nan , LEI Fanpei , YANG Anlong , ZHOU Lixin . Atomization characteristics of impinging liquid jets coupled with forced perturbation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(12) : 124027 -124027 . DOI: 10.7527/S1000-6893.2020.24027

References

[1] 杨立军, 富庆飞. 液体火箭发动机推力室设计[M]. 北京:北京航空航天大学出版社, 2013. YANG L J, FU Q F. Design of liquid rocket engine chamber[M]. Beijing:Beihang University Press, 2013(in Chinese).
[2] 黄玉辉. 液体火箭发动机燃烧稳定性理论、数值模拟和实验研究[D]. 长沙:国防科技大学, 2001. HUANG Y H. Theory, numerical simulation and experimental investigation of combustion instability in liquid rocket engine[D]. Changsha:National University of Defense Technology, 2001(in Chinese).
[3] SHARIFI V, KEMPF A M, BECK C. Large-eddy simulation of acoustic flame response to high-frequency transverse excitations[J]. AIAA Journal, 2018, 57(7):1-14.
[4] ANDERSON W E. The effects of atomization on combution instability[D]. State College:The Pennsylvania State University, 1996.
[5] ANDERSON W E, RYAN H M, SANTORO R J, et al. Combustion instability mechanisms in liquid rocket engines using impinging jet injectors:AIAA-1995-2357[R]. Reston:AIAA, 1995.
[6] KIM S J, WILLIAMS A F. Acoustic-instability boundaries in liquid-propellant rockets:Theoretical explanation of empirical correlation[J]. Journal of Propulsion and Power, 1996, 12(3):621-624.
[7] QIN J, ZHANG H, WANG B. Numerical investigation on combustion instability in a small MMH/NTO liquid rocket engine:AIAA-2016-5087[R]. Reston:AIAA, 2016.
[8] BAI X, CHENG P, LI Q, et al. Effects of self-pulsation on combustion instability in a liquid rocket engine[J]. Experimental Thermal and Fluid Science, 2020, 114(1):110038.
[9] BAILLOT F, BLAISOT J B, BOISDRON G, et al. Behavior of an air-assisted jet submitted to a transverse high-frequency acoustic field[J]. Journal of Fluid Mechanics, 2009, 640:305-342.
[10] CARPENTIER J B, BAILLOT F, BLAISOT J B, et al. Behavior of cylindrical liquid jets evolving in a transverse acoustic field[J]. Physics of Fluids, 2009, 21(2):023601.
[11] FICUCIELLO A, BLAISOT J B, RICHARD C, et al. Investigation of air-assisted sprays submitted to high frequency transverse acoustic fields:Droplet clustering[J]. Physics of Fluids, 2017, 29(6):067103.
[12] HARDI J S, MARTINEZ H C G, OSCHWALD M, et al. LOx jet atomization under transverse acoustic oscillations[J]. Journal of Propulsion and Power, 2014, 30(2):337-349.
[13] RUTARD N, DOREY L H, TOUZE C L, et al. Large-eddy simulation of an air-assisted liquid jet under a high-frequency transverse acoustic forcing[J]. International Journal of Multiphase Flow, 2020, 122:103144.
[14] DIGHE S, GADGIL H. Dynamics of liquid sheet breakup in the presence of acoustic excitation[J]. International Journal of Multiphase Flow, 2018, 99:347-362.
[15] DIGHE S, GADGIL H. Atomization of acoustically forced liquid sheets[J]. Journal of Fluid Mechanics, 2019, 880:653-683.
[16] DIGHE S, GADGIL H. Effect of transverse acoustic forcing on the characteristics of impinging jet atomization[J]. Atomization and Sprays, 2019, 29(1):79-103.
[17] HAKIM L, SCHMITT T, DUCRUIX S, et al. Dynamics of a transcritical coaxial flame under a high-frequency transverse acoustic forcing:Influence of the modulation frequency on the flame response[J]. Combustion and Flame, 2015, 162(10):3482-3502.
[18] 李佳楠, 雷凡培, 周立新, 等. 液体火箭发动机背压振荡环境下的雾化特性研究进展[J]. 推进技术, 2019, 40(11):2401-2419. LI J N, LEI F P, ZHOU L X, et al. Recent advances of atomization characteristics under oscillating backpressure conditions in liquid rocket engines[J]. Journal of Propulsion Technology, 2019, 40(11):2401-2419(in Chinese).
[19] HARRJE D T, READON F H. Liquid propellant rocket combustion instability:NASA-SP-194[R]. Washington, D.C.:NASA, 1972.
[20] OEFELEIN J C, YANG V. Comprehensive review of liquid-propellant combustion instabilities in F-1 engines[J]. Journal of Propulsion and Power, 1993, 9(5):657-677.
[21] 杨立军, 富庆飞. 燃烧室压力振荡对喷嘴出口流量振荡影响分析[J]. 火箭推进, 2008, 34(4):6-11. YANG L J, FU Q F. Investigation on the dynamic interaction between injection flow oscillation and combustion chamber pressure oscillation[J]. Journal of Rocket Propulsion, 2008, 34(4):6-11(in Chinese).
[22] 杨立军, 富庆飞. 由喷嘴连接的燃烧室到供应系统压力振荡传递过程研究[J]. 航空动力学报, 2009, 24(5):1182-1186. YANG L J, FU Q F. Investigation on pressure oscillation propagation from combustion chamber to pipeline through injector[J]. Journal of Aerospace Power, 2009, 24(5):1182-1186(in Chinese).
[23] CRANE L, BIRCH S, MCCORMACK P D. The effect of mechanical vibration on the break-up of a cylindrical water jet in air[J]. British Journal of Applied Physics, 1964, 15:743-751.
[24] MCCORMACK P D, CRANE L, BIRCH S. An experimental and theoretical analysis of cylindrical liquid jets subjected to vibration[J]. British Journal of Applied Physics, 1965, 16:395-409.
[25] CHIGIER N. Breakup of liquid sheets and jets:AIAA 1999-3640[R]. Reston:AIAA, 1999.
[26] 康忠涛, 王振国, 李清廉, 等. 压力振荡对气液同轴离心式喷嘴自激振荡的影响[J]. 航空学报, 2018, 39(6):121988. KANG Z T, WANG Z G, LI Q L, et al. Influence of pressure oscillation on self-pulsation of gas-liquid swirl coaxial injector[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6):121988(in Chinese).
[27] HEISTER S D, RUTZ M W, HILBING J H. Effect of acoustic perturbations on liquid jet atomization[J]. Journal of Propulsion and Power, 1997, 13(1):82-88.
[28] SRINIVASAN V, SALAZAR A J, SAITO K. Modeling the disintegration of modulated liquid jets using volume-of-fluid (VOF) methodology[J]. Applied Mathematical Modelling, 2011, 35:3710-3730.
[29] SRINIVASAN V, SALAZAR A, SAITO K. Numerical simulation of the disintegration of forced liquid jet using volume-of-fluid method[J]. International Journal of Computational Fluid Dynamics, 2010, 24(8):317-333.
[30] YANG X, TURAN A. Simulation of liquid jet atomization coupled with forced perturbation[J]. Physics of Fluids, 2017, 29(2):022103.
[31] POPINET S. Gerris:A tree-based adaptive solver for the incompressible euler equations in complex geometries[J]. Journal of Computational Physics, 2003, 190(2):572-600.
[32] POPINET S. An accurate adaptive solver for surface-tension driven interfacial flows[J]. Journal of Computational Physics, 2009, 228(16):5838-5886.
[33] BAZAROV V, LEE E, LINEBERRY D, et al. Pulsator designs for liquid rocket injector research:AIAA-2007-5156[R]. Reston:AIAA, 2007.
[34] YANG A L, LI B, YANG S R, et al. Periodic atomization characteristics of an impinging jet injector element modulated by Klystron effect[J]. Chinese Journal of Aeronautics, 2018, 31(10):1973-1984.
[35] 杨尚荣, 杨岸龙, 李龙飞, 等. 喷前压力脉动对撞击式喷嘴雾化特性的影响[J]. 推进技术, 2017, 38(5):1100-1106. YANG S R, YANG A L, LI L F, et al. Effects of pressure pulsation upstream of injector on impinging injector atomizaiton[J]. Journal of Propulsion Technology, 2017, 38(5):1100-1106(in Chinese).
[36] 李佳楠, 费俊, 杨伟东, 等. 直流互击式喷注单元雾化特性准直接数值模拟[J]. 推进技术, 2016, 37(4):713-725. LI J N, FEI J, YANG W D, et al. Quasi-direct numerical simulation on atomization characteristics of impinging jets injector[J]. Journal of Propulsion Technology, 2016, 37(4):713-725(in Chinese).
[37] 张波涛, 张友平, 张民庆. 射流在不可压气流中破碎过程高精度仿真[J]. 火箭推进, 2018, 44(1):59-66. ZHANG B T, ZHANG Y P, ZHANG M Q. High-precision numerical simulation of breakup processes of liquid jet in incompressible airflow[J]. Journal of Rocket Propulsion, 2018, 44(1):59-66(in Chinese).
[38] 杨国华, 张波涛, 周立新, 等. 液气动量比对内混式直流气液喷嘴雾化特性的影响[J]. 火箭推进, 2019, 45(5):66-73. YANG G H, ZHANG B T, ZHOU L X, et al. Effects of momentum ratio on atomization characteristics of internal mixing gas-liquid injector[J]. Journal of Rocket Propulsion, 2019, 45(5):66-73(in Chinese).
[39] BRACKBILL J U, KOTHE D B, ZEMACH C A. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2):335-354.
[40] 阎超, 于剑, 徐晶磊, 等. CFD模拟方法的发展成就与展望[J]. 力学进展, 2011, 41(5):563-589. YAN C, YU J, XU J L, et al. On the achievements and prospects for the methods of computation fluid dynamics[J]. Advances in Mechanics, 2011, 41(5):563-589(in Chinese).
[41] BORIS J P, GRINSTEIN E F, ORAN E S, et al. New insights into large eddy simulation[J]. Fluid Dynamics Research, 1992, 10(4-6):199-228.
[42] HIRT C W,NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1):201-225.
[43] 张磊. 界面不稳定性的数值模拟[D]. 合肥:中国科学技术大学, 2003. ZHANG L. Numerical simulations on the instability of interface[D]. Hefei:University of Science and Technology of China, 2003.
[44] 李佳楠, 雷凡培, 周立新. 背压对撞击式喷嘴雾化特性影响研究[J]. 推进技术, 2020, 41(4):847-859. LI J N, LEI F P, ZHOU L X. Effects of backpressure on atomization characteristics of impinging jet injector[J]. Journal of Propulsion Technology, 2020, 41(4):847-859.
[45] ZHANG P Y, WANG B. Effects of elevated ambient pressure on the disintegration of impinged sheets[J]. Physics of Fluids, 2017, 29(4):042102.
[46] ANDERSON W E, RYAN H M, SANTORO R J. Impact wave-based model of impinging jet atomization[J]. Atomization and Sprays, 2006, 16:791-805.
[47] MAJUMDAR N, TIRUMKUDULU M S. Dynamics of radially expanding liquid sheets[J]. Physical Review Letters, 2018, 120:164501.
[48] RAYLEIGH J W S. The explanation of certain acoustical phenomena[J]. Nature, 1978, 18:319-321.
Outlines

/