Electronics and Electrical Engineering and Control

Improved non-damping comprehensive calibration method for grid INS

  • HUANG Weiquan ,
  • FANG Tao ,
  • WANG Zongyi
Expand
  • College of Automation, Harbin Engineering University, Harbin 150001, China

Received date: 2020-03-02

  Revised date: 2020-03-25

  Online published: 2020-05-14

Supported by

National Natural Science Foundation of China (61633008)

Abstract

The comprehensive calibration technique is an effective method for the suppression of grid Inertial Navigation System (INS) errors. The level attitude errors caused by accelerometer biases are the key factors influencing the estimation accuracy of gyroscope drifts in comprehensive calibration. Aiming at this problem, this paper proposes an improved non-damping comprehensive calibration method. First, the objective function in the grid frame is deduced to estimate the accelerometer biases and level horizontal attitudes. Next, the P equation and ψ equation in a non-damping state are introduced. Finally, a non-damping two-point calibration scheme is designed. Before the calibration, the accelerometer biases are estimated and compensated with the velocity given by the Doppler Velocity Log (DVL). The DVL aims to eliminate the negative effect of the level attitude errors caused by accelerometer biases on the estimation accuracy of the gyroscope drifts. With the assistance of two intermittent external positions and yaw, the gyroscope drifts are estimated by the designed calibration scheme. The involved level attitude errors in the calibration scheme are estimated with the DVL. Simulation results indicate that compared with the existing works, the proposed calibration scheme further reduces the time of DVL dependence. Meanwhile, the satisfying estimation and compensation of accelerometer biases lead to the improvement of the estimation accuracy of the gyroscope drift, exhibiting obvious advantage of this method in suppressing navigation errors.

Cite this article

HUANG Weiquan , FANG Tao , WANG Zongyi . Improved non-damping comprehensive calibration method for grid INS[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(9) : 323921 -323921 . DOI: 10.7527/S1000-6893.2020.23921

References

[1] 周琪, 秦永元, 付强文, 等. 极区飞行格网惯性导航算法原理[J]. 西北工业大学学报, 2013, 31(2):210-217. ZHOU Q, QIN Y Y, FU Q W, et al. Grid mechanization in inertial navigation systems for transpolar aircraft[J]. Journal of Northwestern Polytechnical University, 2013, 31(2):210-217(in Chinese).
[2] YAN Z P, WANG L, ZHANG W, et al. Polar grid navigation algorithm for unmanned underwater vehicles[J]. Sensors, 2017, 17(7):1599.
[3] 王纯, 张林让, 罗丰. 基于Kalman滤波的GPS/INS接收机自适应干扰抑制方法[J]. 航空学报, 2013, 34(6):1414-1423. WANG C, ZHANG L R, LUO F. Adaptive interference suppression method based on Kalman filter in GPS/INS receiver[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(6):1414-1423(in Chinese).
[4] ZHANG H L, WU Y X, WU W Q, et al. Improved multi-position calibration for inertial measurement units[J]. Measurement Science and Technology, 2010, 21(1):015107.
[5] AKEILA E, SALCIC Z, SWAIN A. A self-resetting method for reducing error accumulation in INS-based tracking[C]//IEEE/ION Position, Location and Navigation Symposium. Piscataway:IEEE Press, 2010:418-427.
[6] AKEILA E, SALCIC Z, SWAIN A. Reducing low-cost INS error accumulation in distance estimation using self-resetting[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(1):177-184.
[7] GREWAL M S, WEILL L R, ANDREWS A P. Global positioning systems, inertial navigation, and integration[M]. New York:John Wiley & Sons, 2007.
[8] LEE J Y, KIM H S, CHOI K H, et al. Adaptive GPS/INS integration for relative navigation[J]. GPS Solutions, 2016, 20(1):63-75.
[9] 丰璐, 邓志红, 王博, 等. 一种长航时捷联惯导系统单点综合校正方法[J]. 兵工学报, 2016, 37(2):265-271. FENG L, DENG Z H, WANG B, et al. A one-position comprehensive calibration method for long-endurance strapdown inertial navigation systems[J]. Acta Armamentarii, 2016, 37(2):265-271(in Chinese).
[10] BONA B E, SMAY R J. Optimum reset of ships inertial navigation system[J]. IEEE Transactions on Aerospace and Electronic Systems, 1966, AES-2(4):409-414.
[11] 杨晓东, 邓太光. 平台式惯导系统两点校的常值误差分析[J]. 交通运输工程学报, 2011, 11(3):100-104. YANG X D, DENG T G. Constant error analysis of two-point comprehensive calibration in gimbaled inertial navigation system[J]. Journal of Traffic and Transportation Engineering, 2011, 11(3):100-104(in Chinese).
[12] 黄德鸣, 程禄. 惯性导航系统[M]. 北京:国防工业出版社, 1986. HUANG D M, CHENG L. Inertial navigation system[M]. Beijing:National Defense Industrial Press, 1986(in Chinese).
[13] 高伟, 史宏洋, 张鑫, 等. 基于位置信息的捷联惯导系统综合校正[J]. 华中科技大学学报(自然科学版), 2014, 42(6):101-106. GAO W, SHI H Y, ZHANG X, et al. Comprehensive correction technology of strapdown inertial navigation system based on position information[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2014, 42(6):101-106(in Chinese).
[14] 李魁, 王玮, 刘芳, 等. 长航时惯导系统全阻尼综合校正算法[J]. 仪器仪表学报, 2012, 33(3):543-548. LI K, WANG W, LIU F, et al. New comprehensive damping and correction algorithm for long-endurance inertial navigation system[J]. Chinese Journal of Scientific Instrument, 2012, 33(3):543-548(in Chinese).
[15] LI Q, BEN Y Y, YU F, et al. System reset of transversal strapdown INS for ship in polar region[J]. Measurement, 2015, 60:247-257.
[16] HUANG W Q, FANG T, LYNCH A F, et al. Comprehensive calibration algorithm for long-endurance shipborne grid SINS[J]. Measurement Science and Technology, 2019, 30(10):105104.
[17] 罗莉, 张勇刚, 方涛. 横坐标系捷联惯导系统的卡尔曼滤波阻尼设计[J]. 系统工程与电子技术, 2019, 41(6):1336-1341. LUO L, ZHANG Y G, FANG T. Damping algorithm of transverse strap-down inertial navigation system based on Kalman filter[J]. Systems Engineering and Electronics, 2019, 41(6):1336-1341(in Chinese).
[18] 查峰, 覃方君, 李峰, 等. 外速度参考条件下的惯导系统快速外阻尼算法[J]. 武汉大学学报(信息科学版), 2019, 44(3):398-404. ZHA F, TAN F J, LI F, et al. A fast damping algorithm for INS with external velocity reference[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3):398-404(in Chinese).
[19] LIU P J, WANG B, DENG Z H, et al. A correction method for DVL measurement errors by attitude dynamics[J]. IEEE Sensors Journal, 2017, 17(14):4628-4638.
[20] MORGADO M, BATISTA P, OLIVEIRA P, et al. Position USBL/DVL sensor-based navigation filter in the presence of unknown ocean currents[J]. Automatica, 2011, 47(12):2604-2614.
[20] 夏卫星, 杨晓东, 王炜. 惯导系统无阻尼综合校正方法研究[J]. 中国造船, 2012, 53(4):100-108. XIA W X, YANG X D, WANG W. Research on umdamped comprehensive calibration of INS[J]. Shipbuilding of China, 2012, 53(4):100-108(in Chinese).
[21] FANG T, HUANG W Q, LYNCH A F, et al. Non-damping system reset algorithm for shipborne grid strap-down inertial navigation systems[J]. Measurement Science and Technology, 2020, 31(5):055104.
[22] WU Y X, WANG J L, HU D W. A new technique for INS/GNSS attitude and parameter estimation using online optimization[J]. IEEE Transactions on Signal Processing, 2014, 62(10):2642-2655.
[23] CHANG L B, HU B Q. Robust initial attitude alignment for SINS/DVL[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(4):2016-2021.
[24] PAN X F, WU Y X. Underwater Doppler navigation with self-calibration[J]. The Journal of Navigation, 2016, 69(2):295-312.
Outlines

/