Review

Large spaceborne parabolic antenna: Researchp progress

  • CHEN Chuanzhi ,
  • DONG Jiayu ,
  • CHEN Jinbao ,
  • LIN Fei ,
  • JIANG Song ,
  • LIU Tianming
Expand
  • 1. School of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. Key Laboratory of Deep Space Star Table Detection Mechanism Technology, Ministry of Industry and Information Technology, Nanjing 210016, China;
    3. Shanghai Institute of Aerospace Systems, Shanghai 200000, China

Received date: 2020-01-13

  Revised date: 2020-02-03

  Online published: 2020-05-14

Supported by

National Natural Science Foundation of China (51675264); Natural Science Foundation of Jiangsu Province(BK20180437)

Abstract

The parabolic antenna, being an important part of spaceborne antennas, has been widely used in multiple disciplines such as deep space exploration, mobile communications, national defense, and meteorological monitoring. In recent years, with the rapid development of the above disciplines, the research of parabolic antennas has also gained increasing attention. In response to the development and demands of large spaceborne parabolic antennas, this article first systematically summarized the development status of foreign spaceborne parabolic spherical antennas, and rigid, mesh and inflatable spaceborne parabolic spherical antennas. The structure and performance of the spherical antennas are then described and analyzed, followed by a brief description of some domestic research results in this field. After combing the development of spaceborne parabolic cylinder antennas, this paper introduces representative parabolic cylinder antennas at home and abroad, and compares the parameters of parabolic spherical antennas and parabolic cylindrical antennas. Next, the related technologies for spaceborne parabolic antennas in recent years are introduced. Finally, the development trend of the spaceborne parabolic antenna is briefly analyzed and predicted.

Cite this article

CHEN Chuanzhi , DONG Jiayu , CHEN Jinbao , LIN Fei , JIANG Song , LIU Tianming . Large spaceborne parabolic antenna: Researchp progress[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(1) : 523833 -523833 . DOI: 10.7527/S1000-6893.2020.23833

References

[1] 段宝岩. 大型空间可展开天线的研究现状与发展趋势[J]. 电子机械工程, 2017, 33(1):1-14. DUAN B Y. Research status and development trend of large space deployable antenna[J]. Electro-Mechanical Engineering, 2017, 33(1):1-14(in Chinese).
[2] RAHMAT S Y, ZAGHLOUL A I, WILIAMS A E. Large deployable antenna for satellite communications[C]//2000 Antenna and Propagation Society. Piscataway:IEEE Press, 2000:528-529.
[3] 胡飞, 宋燕平, 郑士昆, 等. 空间构架式可展天线研究进展与展望[J]. 宇航学报, 2018, 39(2):111-120. HU F, SONG Y P, ZHENG S K, et al. Research progress and prospects of space-framed expandable antennas[J]. Journal of Astronautics, 2018, 39(2):111-120(in Chinese).
[4] IMBRIALE W A, GAO S S, BOCCIA L. Space antenna handbook[M]. New York:John Wiley & Sons, 2012:179-180.
[5] PETERSON L D, BULLOCK S J, HINKLE J D, et al. Micron accurate deployable antenna and sensor technology for new-millennium-era spacecraft[C]//1996 IEEE Aerospace Applications Conference. Piscataway:IEEE Press, 1998:129-139.
[6] WADA B K. Adaptive structures-an overview[J]. Journal of Spacecraft and Rockets, 1990, 27(3):330-337.
[7] TAKANO T. Large deployable antennas-concepts and realization[C]//IEEE Antennas and Propagation Society International Symposium. Piscataway:IEEE Press, 1999:1512-1515.
[8] RUSCH W V T. The current state of the reflector antenna are-entering the 1990 s[J]. Proceedings of the IEEE, 1992, 80(1):113-126.
[9] 马小飞, 李洋, 肖勇, 等. 大型空间可展开天线反射器研究现状与展望[J]. 空间电子技术, 2018, 15(2):16-26. MA X F, LI Y, XIAO Y, et al, Deployment and tendency of large space deployable antenna reflector[J]. Space Electronic Technology, 2018, 15(2):16-26(in Chinese).
[10] HUANG H, GUAN F L, PAN L L, et al. Design and deploying study of a new petal-type deployable solid surface antenna[J]. Acta Astronautica, 2018, 148:99-110.
[11] ESCRIG F. Expandable space structures[J]. International Journal of Space Structures, 1985, 1(2):79-91.
[12] ARCHER J S, PALMER W B. Antenna technology for QUASAT application:N85-2381314-15[R]. Washington,D.C.:Langley Research Center Large Space Antenna Systems Technol, 1984.
[13] 刘荣强, 田大可, 邓宗全. 空间可展开天线结构的研究现状与展望[J]. 机械设计, 2010, 27(9):1-10. LIU R Q, TIAN D K, DENG Z Q. Research status and prospects of space expandable antenna structure[J]. Journal of Machine Design, 2010, 27(9):1-10(in Chinese).
[14] GUEST S D, PELLEGRINO S. A new concept for solid surface deployable antennas[J]. Acta Astronautica, 1996, 38(2):103-113.
[15] YOU Z. Deployable structures for masts and reflector antennas[D]. Cambridge:University of Cambridge, 1994:10-18.
[16] 王建东. 可展开固面天线机构设计与性能研究[D]. 哈尔滨:哈尔滨工程大学, 2019:2-3. WANG J D. Research on mechanism design and performance of deployable solid reflector antenna[D]. Harbin:Harbin Engineering University, 2019:2-3(in Chinese).
[17] ABT B, WOLLENHAUPT H. A deployable 30/20 GHz multibeam offset antenna[C]//10th Communications Satellite Systems Conference and Technical Display, 1984:658-660.
[18] GUEST S D, PELLEGRINO S. Inextensional wrapping of flat membranes[C]//Proceedings of the First International Seminar on Structural Morphology. Montpellier:IAEA, 1992:203-215.
[19] TIBERT G. Deployable tensegrity structures for space applications[D]. Stockholm:KTH Royal Institute of Technology, 2002:17-19.
[20] LOVE A W. Some highlights in reflector antenna development[J]. Radio Science, 1976, 11:671-755.
[21] 张辰, 韦娟芳, 戚学良, 等. 径向肋可展开天线动力学特性试验研究[J]. 振动、测试与诊断, 2018, 38(4):780-784,875. ZHANG C, WEI J F, QI X L, et al. Experimental study on dynamic characteristics of radial rib deployable antenna[J]. Journal of Vibration, Measurement & Diagnosis, 2018, 38(4):780-784,875(in Chinese).
[22] GIBBONS R C. Potential future applications for the tracking and data relay satellite Ⅱ (TDRS Ⅱ) system[J]. Acta Astronautica, 1995, 35(8):537-545.
[23] SAUDER J, CHAHAT N, THOMSON M, et al. Ultra-compact Ka-band parabolic deployable antenna for radar and interplanetary CubeSats[C]//29th Annual AIAA/USU Conference on Small Satellites. Reston:AIAA, 2015:1-3.
[24] CHAHAT N, SAUDER J, THOMSON M, et al. CubeSat deployable Ka-band reflector antenna for deep space missions[C]//2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. Piscataway:IEEE Press, 2015:2185-2186.
[25] 周彩根, 樊昀. 静止轨道电子侦察卫星发展趋势展望[C]//中国电子学会电子对抗分会学术年会.北京:中国电子学会, 2003:71-73. ZHOU C G, FAN Y. Prospect of development trend of geostationary satellite electronic reconnaissance satellite[C]//China Electronics Academic Meeting Electronic Warfare Branch Academic Annual Meeting. Beijing:Chinese Institute of Electronics, 2003:71-73(in Chinese).
[26] 董志强, 段宝岩. 星载天线缠绕肋条的力学特性研究[J]. 西安电子科技大学学报, 2001,28(6):755-758. DONG Z Q, DUAN B Y. Study on mechanical properties of spaceborne antenna wound ribs[J]. Journal of Xidian University, 2001,28(6):755-758(in Chinese).
[27] CAMPBELL G, BAILEY M C, BELVIN W K. The development of the 15-meter hoop column deployable antenna system with final structural and electromagnetic performance results[J]. Acta Astronautica, 1988, 17(1):69-77.
[28] BELVIN W K, EDIGHOFFER H H, HERSTROM C L. Quasistatic shape adjustment of a 15-meter-diameter space antenna[J]. Journal of Spacecraft and Rockets, 1989, 26(3):129-136.
[29] TAKANO T, MIURA K, NATORI M, et al. Deployable antenna with 10-m maximum diameter for space use[J]. IEEE Transactions on Antennas and Propagation, 2004, 52(1):2-11.
[30] 寇艳玲. 采用绳索张力桁架结构的可展开大口径星载天线[J]. 空间电子技术, 1999(2):38-46. KOU Y L. Deployable large-caliber spaceborne antenna with rope tension truss structure[J]. Space Electronic Technology, 1999(2):38-46(in Chinese).
[31] MIURA K, MIYAZAKI Y. Concept of the tension truss antenna[J]. AIAA Journal, 1990, 28(6):1098-1104.
[32] TAKANO T, NATORI M, MIYOSHI K, et al. Characteristics verification of a deployable onboard antenna of 10 m maximum diameter[J]. Acta Astronautica, 2002, 51(11):771-778.
[33] PELLEGRINO S, TAN L. Stiffness design of spring back reflectors[C]//Proceedings of the 43rd Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2002:2306-2317.
[34] 郭金伟, 黄志荣, 许允斗, 等. 一类基于四面体组合单元的模块化构架式可展开天线机构[J]. 航空学报, 2020, 41(3):423219. GUO J W, HUANG Z R, XU Y D, et al. Deployment antenna mechanism with class of modular truss based on tetrahedral combination unit[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3):423219(in Chinese).
[35] XU Y, GUAN F L. Structure-electronic synthesis design of deployable truss antenna[J]. Aerospace Science and Technology, 2013, 26(1):259-267.
[36] 杨毅, 丁希仑. 四棱锥单元平板式可展开收拢机构的运动特性分析[J]. 航空学报, 2010, 31(6):1257-1265. YANG Y, DING X L. Kinematic analysis of a plane deployable mechanism assembled by four pyramid cells[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(6):1257-1265(in Chinese).
[37] 田大可. 模块化空间可展开天线支撑桁架设计与实验研究[D]. 哈尔滨:哈尔滨工业大学, 2011:70-76. TIAN D K, Design and experimental research on truss structure for modular space deployable antenna[D]. Harbin:Harbin Institute of Technology, 2011:70-76(in Chinese).
[38] KOHATA H. Development and operation of engineering test Satellite-VⅢ (KIKU-8)[J]. IEICE Communications Society Magazine, 2007, 2007(3):64-78.
[39] 陈向阳, 关富玲. 六棱柱单元可展抛物面天线结构设计[J]. 宇航学报, 2001(1):75-78. CHEN X Y, GUAN F L. Design of a parabolic antenna structure for a hexagonal prism unit[J]. Journal of Astronautics, 2001(1):75-78(in Chinese).
[40] NATORI M C, HIRABAYASHI H, OKUIZUMI N, et al. A structure concept of high precision mesh antenna for space VLBI observation[C]//43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2002:1359-1362.
[41] YONEZAWA K, HOMMA M. Attitude control on ETS-VⅢ mobile communication satellite with large deployable antenna[C]//21 st AIAA International Communications Satellite Systems Conference and Exhibit. Reston:AIAA, 2003:1-5.
[42] LIN F, CHEN J B, CHEN C Z, et al. Deployment accuracy analysis of cable-strut deployable mechanism with joint clearances and forces constrained[J]. Journal of Vibro Engineering, 2018, 20(5):2085-2089.
[43] THOMSON M. AstroMeshTM deployable reflectors for Ku and Ka band commercial satellites[C]//20th AIAA International Communication Satellite Systems Conference and Exhibit. Reston:AIAA, 2002:2032-2040.
[44] NORTHROP G. Astromesh reflector family[OL].[2020-01-22]. https://www.northropgrumman.com/space/astro-aerospace-products-astro-mesh/
[45] 刘升. 空间双剪式铰天线设计与展开过程动力学分析[D]. 西安:西安电子科技大学, 2014:2-4. LIU S. Design and deployment dynamic analysis for space double-layer pantograph antenna[J]. Xi'an:Xidian University, 2014:2-4(in Chinese).
[46] CHERNIAVSKY A G, GULYAYEV V I, GAIDAICHUK V V, et al. Large deployable space antennas based on usage of polygonal pantograph[J]. Journal of Aerospace Engineering, 2005, 18(3):139-145.
[47] MEDZMARIASHVILI E, TSERODZE S, TSIGNADZE N, et al. A new design variant of the large deployable space reflector[C]//Earth & Space 2006:Engineering, Construction, and Operations in Challenging Environment. Houston:ASCE, 2006:1-8.
[48] 黄河. 充气可展开薄膜反射面结构的型面分析与优化[D]. 杭州:浙江大学, 2016:7-10. HUANG H. Profile analysis and optimization of inflatable expandable membrane structure[D]. Hangzhou:Zhejiang University, 2016:7-10(in Chinese).
[49] LICHODZIEJEWSKI D, CRAVEY R, HOPKINS G. Inflatably deployed membrane waveguide array antenna for space[C]//44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2003:1649-1652.
[50] CASSAPAKIS C G, LOVE A W, PALISOC A L. Inflatable space antennas-a brief overview[C]//1998 IEEE Aerospace Conference Proceedings. Piscataway:IEEE Press, 1998, 3:453-459.
[51] 王援朝. 充气天线结构技术概述[J]. 电讯技术, 2003(2):6-11. WANG Y C. Inflatable antenna structure technology overview[J]. Telecommunication Engineering, 2003(2):6-11(in Chinese).
[52] FURUYA H. Concept of deployable tensegrity structures in space application[J]. International Journal of Space Structures, 1992, 7(2):143-151.
[53] 晓燕, 紫晓. 太空唱响东方红(上)——纪念我国东方红二号通信卫星发射成功30周年[J]. 中国航天, 2014(4):3-8. XIAO Y, ZI X. Singing dongfanghong from space (Part 1)-commemorating the 30th anniversary of the successful launch of China's Dongfanghong 2 communication satellite[J]. Aerospace China, 2014(4):3-8(in Chinese).
[54] 刘丹. "实践十三号"让你的手机总在服务区[J]. 计算机与网络, 2017, 43(9):14-15. LIU D. "SJ-13" keeps your phone in the service area[J]. Computer & Network, 2017, 43(9):14-15(in Chinese).
[55] 张润宁, 姜秀鹏. 环境一号C卫星系统总体设计及其在轨验证[J]. 雷达学报, 2014, 3(3):249-255. ZHANG R N, JIANG X P. System design and In-orbit verification of the HJ-1-C SAR satellite[J]. Journal of Radars, 2014, 3(3):249-255(in Chinese).
[56] 李海英, 张珊珊, 李世强, 等. 环境一号C卫星合成孔径雷达相干性分析[J]. 雷达学报, 2014, 3(3):320-325. LI H Y, ZHANG S S, LI S Q, et al. Coherent performance analysis of the HJ-1-C synthetic aperture radar[J]. Journal of Radars, 2014, 3(3):320-325(in Chinese).
[57] i北理.[系列]北理工空间载荷之在宇宙展开一张"天网"[OL].[2017-09-06]. https://www.sohu.com/a/190118847_154262/. I Beili.[Series]North polytechnic space load expands a "Skynet" in the universe[OL].[2020-01-16]. https://www.sohu.com/a/190118847_154262/(in Chinese).
[58] 寻广彬. 星载径向肋索网天线结构设计分析与形状主动控制[D]. 大连:大连理工大学, 2019:3-6. XUN G B. Structure design analysis and active shape control of spaceborne radial rib net antenna[D]. Dalian:Dalian University of Technology, 2019:3-6(in Chinese).
[59] 张立华, 熊亮, 孙骥, 等. 嫦娥四号任务中继星"鹊桥"技术特点[J]. 中国科学:技术科学, 2019, 49(2):138-146. ZHANG L H, XIONG L, SUN J, et al. ChangE 4 mission relay star "QueQiao" technical characteristics[J]. Science in China:Technical Science, 2019, 49(2):138-146(in Chinese).
[60] 成新兴. 空间充气可展硬化薄膜天线结构热分析[D]. 上海:上海交通大学, 2011:2-6. CHENG X X. Thermal analysis of space inflatable expandable film antenna structure[D]. Shanghai:Shanghai Jiao Tong University, 2011:2-6(in Chinese).
[61] 姜伟. 空间充气可展天线反射面设计、分析与试验研究[D]. 上海:上海交通大学, 2007:1-6. JIANG W. Design, analysis and experimental study of reflecting surface of space inflatable expandable antenna[D]. Shanghai:Shanghai Jiao Tong University, 2007:1-6(in Chinese).
[62] 沈永正. 薄壳抛物柱面端部加载成型方法与精度分析[D]. 哈尔滨:哈尔滨工业大学, 2015:4-9. SHEN Y Z. Thin-shell parabolic cylindrical end loading forming method and precision analysis[D]. Harbin:Harbin Institute of Technology, 2015:4-9(in Chinese).
[63] 朱加炉, 陈志平, 陈学雷, 等. 天籁实验抛物柱面天线阵结构设计与力学分析[J]. 天文研究与技术, 2015, 12(1):14-22. ZHU J L, CHEN Z P, CHEN X L, et al. Structural design and mechanical analysis of parabolic antenna array of scorpio experiment[J]. Astronomical Research & Technology, 2015, 12(1):14-22(in Chinese).
[64] KRAUS J D. Big ear two:Listening for other-worlds[M]. Cygnus-Quasar Books, 1995.
[65] SWENSON G W, LO Y. The University of Ⅲ inois radio telescope[J]. IRE Transactions on Antennas and Propagation, 1961, 9(1):9-16.
[66] MEDICINA R. Medicina radio telescopes visitor center "Marcello Ceccarelli"[OL].[2019-12-02]. http://www.med.ira.inaf.it/index_EN.htm.
[67] COGNARD I, SILVA B D. Grand radiotélescope[OL].[2020-01-12]. https://www.obs-nancay.fr/-Grand-Radiotelescope-.html?lang=fr.
[68] SUKUMAR S, VELUMAMY T, PRAMESH R A, et al. Ooty synthesis radio telescope:Design and performance[J]. Astronomical Society of Indian, Bulletin, 1988, 16:93-110.
[69] RAHMATSAMⅡ Y, HUANG J, LOPEZ B, et al. Advanced precipitation radar antenna:array-fed offset membrane cylindrical reflector antenna[J]. IEEE Transactions on Antennas and Propagation, 2005, 53(8):2503-2515.
[70] IM E, DURDEN S L, KAKAR R K, et al. Next generation of spaceborne rain radars:science rationales and technology status[C]//Microwave Remote Sensing of the Atmosphere and Environment Ⅲ. International Society for Optics and Photonics.Bellingham:SPIE, 2003, 4894:178-189.
[71] SADOWY G, BERKUN A, DURDEN S, et al. Technologies for the next generation of spaceborne precipitation radars[C]//2001 IEEE Aerospace Conference Proceedings. Piscataway:IEEE Press, 2001, 4:1811-1823.
[72] LIN J, SAPNA G, SCARBOROUGH S, et al. Advanced precipitation radar antenna singly curved parabolic antenna reflector development[C]//44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2003:1651-1655.
[73] RAHMAT-SAMⅡ Y, HUANG J, LOPEZ B, et al. Advanced precipitation radar antenna:Array-fed offset membrane cylindrical reflector antenna[J]. IEEE Transactions on Antennas and Propagation, 2005, 53(8):2503-2515.
[74] SINTON S, RAHMAT-SAMⅡ Y. Random surface error effects on offset cylindrical reflector antennas[J]. IEEE Transactions on Antennas and Propagation, 2003, 51(6):1331-1337.
[75] IM E, DURDEN S. Next-generation spaceborne precipitation radar instrument concepts and technologies[C]//45th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA,2007:1105-1106.
[76] 方刚, 张玉梅. 双频段双极化星载降水测量雷达天线设计[J]. 电子与信息学报, 2016, 38(8):1977-1983. FANG G, ZHANG Y M. Design of dual-band dual-polarized spaceborne precipitation measurement radar antenna[J]. Journal of Electronics & Information Technology, 2016, 38(8):1977-1983(in Chinese).
[77] SOYKASAP O, WATT A M, PELLEGRINO S. New deployable reflector concept[C]//45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. Reston:AIAA, 2004:1574-1575.
[78] SPENCE T, COOLEY M, STENGER P, et al. Concept design of a multi-band shared aperture reflect array/reflector antenna[C]//2016 IEEE International Symposium on Phased Array Systems and Technology (PAST). Piscataway:IEEE Press, 2016:1-6.
[79] LIU H, ZHANG X, NIU L, et al. A combined L-band synthetic aperture radiometer and fan-beam scatter meter for soil moisture and ocean salinity measurement[C]//2012 IEEE International Geoscience and Remote Sensing Symposium. Piscataway:IEEE Press, 2012:4644-4647.
[80] MUSKETT R R. L-band in SAR penetration depth experiment, north slope Alaska[J]. Journal of Geoscience and Environment Protection, 2017, 5(3):14.
[81] NEC. ANSARO-2(Advanced satellite with new system architecture for observation-2)[OL].[2020-04-12]. https://directory.eoportal.org/web/eoportal/satellite-missions/a/asnaro-2.
[82] LIU H, ZHU D, NIU L, et al. MICAP (Microwave imager combined active and passive):A new instrument for Chinese ocean salinity satellite[C]//2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Piscataway:IEEE Press, 2015:184-187.
[83] 戴宇航, 蒋松, 陈金宝, 等. 大型星载天线桁架式可折展机构的模态分析[J]. 上海航天, 2019, 36(1):97-101. DAI Y H, JIANG S, CHEN J B, et al. Modal analysis of large spaceborne antenna truss foldable mechanism[J]. Aerospace Shanghai, 2019, 36(1):97-101(in Chinese).
[84] LIN F, CHEN C Z, CHEN J B, et al. Modelling and analysis for a cylindrical net-shell deployable mechanism[J]. Advances in Structural Engineering, 2019, 22(15):3149-3160.
[85] 王玉. 模块化抛物柱面天线展开机构与索网结构设计与分析[D]. 西安:西安电子科技大学, 2018:28-33. WANG Y. Design and analysis of modular parabolic cylindrical antenna deployment mechanism and cable net structure[D]. Xi'an:Xidian University, 2018:28-33(in Chinese).
[86] 秦波, 吕胜男, 刘全, 等. 可展收抛物柱面天线机构的设计及分析[J]. 机械工程学报, 2020, 56(5):100-107. QIN B, LV S N, LIU Q, et al. Design and analysis of a retractable parabolic cylinder antenna mechanism[J]. Journal of Mechanical Engineering, 2020, 56(5):100-107(in Chinese).
[87] SHI C, GUO H, ZHENG Z, et al. Conceptual configuration synthesis and topology structure analysis of double-layer hoop deployable antenna unit[J]. Mechanism and Machine Theory, 2018, 129:232-260.
[88] HAN B, ZHENG D, XU Y, et al. Kinematic characteristics and dynamics analysis of an over constrained scissors double-hoop truss deployable antenna mechanism based on screw theory[J]. IEEE Access, 2019, 7:140755-140768.
[89] HAN B, XU Y, YAO J, et al. Design and analysis of a scissors double-ring truss deployable mechanism for space antennas[J]. Aerospace Science and Technology, 2019, 93:105357.
[90] LIU R, GUO H, LIU R, et al. Structural design and optimization of large cable-rib tension deployable antenna structure with dynamic constraint[J]. Acta Astronautica, 2018, 151:160-172.
[91] MARIYAM S, CHEN W. Analytical kinematics and trajectory planning of large scale hexagonal modular mesh deployable antenna[C]//MATEC Web of Conferences. EDP Sciences, 2016, 77:01012.
[92] SUN Z, DING Y K, ZHANG Y Q, et al. Deployment kinematic analysis and control of a new hoop truss deployable antenna[C]//MATEC Web of Conferences. EDP Sciences, 2019, 256:05004.
[93] LI P, LIU C, TIAN Q, et al. Dynamics of a deployable mesh reflector of satellite antenna:Parallel computation and deployment simulation[J]. Journal of Computational and Nonlinear Dynamics, 2016, 11(6):061005.
[94] WU H, LIU M, WANG J, et al. An easy-to-implement thermal test system for large deployable antennas[J]. Acta Astronautica, 2018, 151:494-503.
[95] BI Y Q, WANG J, LI X Y. On-orbit temperature field calculation and analysis for large net-shape deployable antennas[J]. Computational Methods and Experimental Measurements XVⅡ, 2015, 59:411.
[96] SIRIGULENG B, ZHANG W, LIU T, et al. Vibration modal experiments and modal interactions of a large space deployable antenna with carbon fiber material and ring-truss structure[J]. Engineering Structures, 2019, 207:109932.
[97] LI P, LIU C, TIAN Q, et al. Dynamics of a deployable mesh reflector of satellite antenna:Form-finding and modal analysis[J]. Journal of Computational and Nonlinear Dynamics, 2016, 11(4):041017.
[98] 张磊, 蒋金华, 张晨曙, 等. 柔性经编金属网格材料的双向拉伸性能[J]. 针织工业, 2013(2):10-13. ZHANG L, JIANG J H, ZHANG C S, et al. Bi-axial tensile properties of flexible warp knitted metal mesh[J]. Knitting Industries, 2013(2):10-13(in Chinese).
[99] ZHANG Y, ZHANG H, YANG D, et al. Form-finding design of cable-mesh deployable reflector antennas considering wire mesh properties[J]. AIAA Journal, 2019, 57(11):5027-5041.
[100] LIU R, GUO H, LIU R, et al. Shape accuracy optimization for cable-rib tension deployable antenna structure with tensioned cables[J]. Acta Astronautica, 2017, 140:66-77.
Outlines

/