Material Engineering and Mechanical Manufacturing

Fiber placement trajectory planning and tows increase or decrease algorithm for revolution body

  • SONG Guilin ,
  • WANG Xianfeng ,
  • ZHAO Cong ,
  • GAO Tiancheng ,
  • XUE Ke
Expand
  • College of Materials Science&Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2019-12-03

  Revised date: 2020-01-15

  Online published: 2020-05-14

Supported by

Equipment Common Technology Project of Equipment Development Department (41422010403); Natural Science Foundation of Jiangsu Province for Youth (BK20190425); China Postdoctoral Science Foundation (2018M642250); Jiangsu Postdoctoral Science Foundation (2018K064C)

Abstract

To meet the requirements of full layability of automatic fiber placement and overcome the shortcomings of current trajectory planning, different tows increasing and decreasing algorithms based on path planning of AFP (Automated Fiber Placement) are proposed in this paper. The definition of fiber direction and the generation algorithm of the central track are first discussed to determine the number of central trajectories. Then, the tows overlapping coefficient is used as an important parameter to propose a single-sided fiber cutting algorithm and a double-sided fiber cutting algorithm for the local fiber accumulation and vacancy problems. The overlap area and gap area after cutting are obtained to uniformly cover the fiber tows on the surface of the core mold. Finally, based on the CATIA CAA secondary development platform, the above algorithms are integrated into the fiber placement CAD system, and the correctness of the algorithms is verified by the motion simulation system. Using the proposed tows increase and decrease algorithms, the gap/overlap areas are evenly distributed, minimizing the adverse effect of the accumulation of related defects such as the resin-rich area on the performance.

Cite this article

SONG Guilin , WANG Xianfeng , ZHAO Cong , GAO Tiancheng , XUE Ke . Fiber placement trajectory planning and tows increase or decrease algorithm for revolution body[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(11) : 423704 -423704 . DOI: 10.7527/S1000-6893.2020.23704

References

[1] 包建文, 蒋诗才, 张代军. 航空碳纤维树脂基复合材料的发展现状和趋势[J]. 科技导报, 2018, 36(19):52-63. BAO J W, JIANG S C, ZHANG D J. Current status and trends of aeronautical resin matrix composites reinforced by carbon fiber[J]. Science & Technology Review, 2018, 36(19):52-63(in Chinese).
[2] 杨纪龙, 景磊, 刘甲秋, 等. 复合材料先进技术发展概述[J]. 纤维复合材料, 2019, 36(1):38-42. YANG J L, JING L, LIU J Q, et al. Development overview of advanced composite materials technology[J]. Fiber Composites, 2019, 36(1):38-42(in Chinese).
[3] 王显峰, 张育耀, 赵聪, 等. 复合材料自动铺丝设备研究现状[J]. 航空制造技术, 2018, 61(14):83-90.WANG X F, ZHANG Y Y, ZHAO C, et al. Research status of automatic fiber placement equipment for composite materials[J]. Aeronautical Manufacturing Technology, 2018, 61(14):83-90(in Chinese).
[4] 沈军, 谢怀勤. 先进复合材料在航空航天领域的研发与应用[J]. 材料科学与工艺, 2008, 16(5):737-740. SHEN J, XIE H Q. Development of research and application of the advanced composite materials in the aerospace engineering[J]. Materials Science and Technology, 2008, 16(5):737-740(in Chinese).
[5] 肖军, 李勇, 文立伟, 等. 树脂基复合材料自动铺放技术进展[J]. 中国材料进展, 2009, 28(6):28-32. XIAO J, LI Y, WEN L W, et al. Progress of automated placement technology for polymer composites[J]. Materials China, 2009, 28(6):28-32(in Chinese).
[6] 文立伟, 肖军, 王显峰, 等. 中国复合材料自动铺放技术研究进展[J]. 南京航空航天大学学报, 2015, 47(5):637-649. WEN L W, XIAO J, WANG X F, et al. Progress of automated placement technology for composites in china[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(5):637-649(in Chinese).
[7] 何亚飞, 矫维成, 杨帆, 等. 树脂基复合材料成型工艺的发展[J]. 纤维复合材料, 2011, 28(2):7-13. HE Y F, JIAO W C, YANG F, et al. The development of polymer composites forming process[J]. Fiber Composites, 2011, 28(2):7-13(in Chinese).
[8] 张建宝, 赵文宇, 王俊锋, 等. 复合材料自动铺放工艺技术研究现状[J]. 航空制造技术, 2014(16):80-83. ZHANG J B, ZHAO W Y, WANG J F, et al. Research status of automated placement processing technology of composites[J]. Aeronautical Manufacturing Technology, 2014(16):80-83(in Chinese).
[9] 黄文宗, 孙容磊, 张鹏, 等. 国内复合材料自动铺放技术发展[J]. 航空制造技术, 2014(16):84-89. HUANG W Z, SUN R L, ZHANG P, et al. Development of automated placement technology for composite material[J]. Aeronautical Manufacturing Technology, 2014(16):84-89(in Chinese).
[10] SHIRINZADEH B, CASSIDY G, OETOMO D, et al. Trajectory generation for open-contoured structures in robotic fibre placement[J]. Robotics and Computer-Integrated Manufacturing, 2007, 23(4):380-394.
[11] SHIRINZADEH B, ALICI G, FOONG C W, et al. Fabrication process of open surfaces by robotic fibre placement[J]. Robotics and Computer-Integrated Manufacturing, 2004, 20(1):17-28.
[12] YAN L, CHEN Z C, SHI Y, et al. An accurate approach to roller path generation for robotic fibre placement of free-form surface composites[J]. Robotics and Computer-Integrated Manufacturing, 2014, 30(3):277-286.
[13] BRUYNEEL M, ZEIN S. A modified fast marching method for defining fiber placement trajectories over meshes[J]. Computers & Structures, 2013, 125(4):45-52.
[14] WANG X P, AN L L, ZHANG L Y, et al. Uniform coverage of fibres over open-contoured freeform structure based on arc-length parameter[J]. Chinese Journal of Aeronautics, 2008, 21(6):571-577.
[15] 李善缘, 王小平, 朱丽君. 复合材料铺丝成型中的路径规划[J]. 宇航材料工艺, 2009, 39(2):25-29. LI S Y, WANG X P, ZHU L J. Path planning for composite fiber placement[J]. Aerospace Materials & Technology, 2009, 39(2):25-29(in Chinese).
[16] 李善缘. 复合材料铺丝成型中的路径规划[D]. 南京:南京航空航天大学, 2009:25-40. LI S Y. Trajectory planning of automatic composite fiber placement[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2009:25-40(in Chinese).
[17] 安鲁陵, 周燚, 周来水. 复合材料纤维铺放路径规划与丝数求解[J]. 航空学报, 2007, 28(3):745-750. AN L L, ZHOU Y, ZHOU L S. Composite fiber placement path planning and fiber number determination[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(3):745-750(in Chinese).
[18] 李俊斐, 王显峰, 肖军, 等. 网格化曲面的固定角度铺丝轨迹规划算法[J]. 计算机辅助设计与图形学学报, 2013, 25(9):1410-1415. LI J F, WANG X F, XIAO J, et al. Trajectory planning of automated fiber placement for meshed surface in fixed angle algorithm[J]. Journal of Computer-Aided Design & Computer Graphics, 2013, 25(9):1410-1415(in Chinese).
[19] 熊文磊, 肖军, 王显峰, 等. 基于网格化曲面的自适应自动铺放轨迹算法[J]. 航空学报, 2013, 34(2):434-441. XIONG W L, XIAO J, WANG X F, et al. Algorithm of adaptive planning for automated placement on meshed surface[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2):434-441(in Chinese).
[20] ZENG W, XIAO J, LI Y, et al. Research on path planning and coverability analysis of automatic fiber placement for structures in revolving shell[J]. Journal of Astronautics, 2010, 31(1):239-243.
[21] SCHUELER K, MILLER J, HALE R. Approximate geometric methods in application to the modeling of fiber placed composite structures[J]. Journal of Computing and Information Science in Engineering, 2004, 4(3):251-256.
[22] BLOM A W, STICKLER P B, GURDAL Z. Optimization of a composite cylinder under bending by tailoring stiffness properties in circumferential direction[J]. Composites Part B:Engineering, 2010, 41(2):157-165.
[23] 张一卓, 韩妙玲, 赵尧旭, 等. 小型飞机尾椎类零件的纤维铺放轨迹规划算法[J]. 玻璃钢/复合材料, 2018, 20(10):12-19. ZHANG Y Z, HAN M L, ZHAO Y X, et al. The trajectory planning algorithm of fiber placement for small aircraft tail parts[J]. Fiber Reinforced Plastics/Composites, 2018, 20(10):12-19(in Chinese).
Outlines

/