Fluid Mechanics and Flight Mechanics

Effect of spanwise oscillation on interaction of shock wave and turbulent boundary layer

  • SUN Dong ,
  • LIU Pengxin ,
  • TONG Fulin
Expand
  • State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2020-04-02

  Revised date: 2020-04-20

  Online published: 2020-05-11

Supported by

National Key Research and Development Program of China (2019YFA0405300);Nation Natural Science Foundation of China (11802324); National Numerical Wind Tunnel Project

Abstract

Spanwise oscillation has been studied extensively as an effective drag reducing tool. However, research on its impact on the shock wave/boundary layer interaction is still rare. In this paper, we perform a Direct Numerical Simulation (DNS) of oblique shock wave/boundary layer interaction at Ma=2.9 with 12° incident angle. Through a quantitative comparison with the case without oscillation, the impact of the oscillation on complex structures in size of separation bubbles, fluctuations of wall pressure and statistical characteristics of wall shear stresses is revealed. With strong spanwise oscillation, the separation position moves upstream and the intermittency length increases. The penetrating depth of the spanwise oscillation is about 4% of the separation bubble height due to the viscous dissipation of the boundary layer. Therefore, the general structures of the interaction will not be affected. Since the spanwise velocity is much larger than the streamwise velocity in the near wall region, the peak of probability density functions of the angle between wall shear stress components shifts from 0° to 80°-90°. The proper orthogonal decompositions of wall pressure and wall shear stresses indicate that the model energy will be transferred from the lower-order modes to higher-order ones, and the proportion of energy in low-frequency motion is reduced, while the structures after reattachment such as Görtler vortices will be strengthened.

Cite this article

SUN Dong , LIU Pengxin , TONG Fulin . Effect of spanwise oscillation on interaction of shock wave and turbulent boundary layer[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(12) : 124054 -124054 . DOI: 10.7527/S1000-6893.2020.24054

References

[1] ERENGIL M E, DOLLING D S. Physical causes of separation shock unsteadiness in shock-wave/boundary layer interactions:AIAA-1993-3134[R]. Reston:AIAA, 1993.
[2] BRUSNIAK L, DOLLING D S. Physics of unsteady blunt-fin-induced shock wave/turbulent boundary layer interactions[J]. Journal of Fluid Mechanics, 1994, 273:375-409.
[3] HOU Y X, CLEMENS N T, DOLLING D S. Wide-field PIV study of shock induced turbulent boundary layer separation:AIAA-2003-0441[R]. Reston:AIAA, 2003.
[4] GANAPATHISUBRAMANI B, CLEMENS N T, DOLLING D S. Effects of upstream boundary layer on the unsteadiness of shock-induced separation[J]. Journal of Fluid Mechanics, 2007, 585:369-394.
[5] HUMBLE R A, ELSINGA G E, SCARANO F, et al. Three-dimensional instantaneous structure of a shock wave/turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2009, 622:33-62.
[6] HUMBLE R A, ELSINGA G E, SCARANO F, et al. Investigation of the instantaneous 3D flow organization of a shock wave/turbulent boundary layer interaction using tomographic PIV:AIAA-2007-4112[R]. Reston:AIAA, 2007.
[7] HUMBLE R A, SCARANO F, OUDHEUSDEN B W. Particle image velocimetry measurements of a shock wave/turbulent boundary layer interaction[J]. Experiments of Fluids, 2007,43:173-183.
[8] PIROZZOLI S, GRASSO F. Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M=2.25[J]. Physics of Fluids, 2006,18(6):065113.
[9] TOUBER E, SANDHAM N D. Large-eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble[J]. Theoretical and Computational Fluid Dynamics, 2009, 23:79-107.
[10] TONG F L, YU C P, TANG Z G, et al. Numerical studies of shock wave interactions with a supersonic turbulent boundary layer in compression corner:Turning angle effects[J]. Computers and Fluids, 2017, 149:56-69.
[11] 童福林, 周桂宇,周浩,等. 激波/湍流边界层干扰物面剪切应力统计特性[J].航空学报,2019, 40(5):122504. TONG F L, ZHOU G Y, ZHOU H, et al. Statistical characteristics of wall shear stress in shock wave and turbulent boundary layer interaction[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5):122504(in Chinese).
[12] 童福林, 孙东, 袁先旭, 等. 超声速膨胀角入射激波/湍流边界层干扰直接数值模拟[J]. 航空学报, 2020, 41(3):123328. TONG F L, SUN D, YUAN X X, et al. Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction in a supersonic expansion corner[J]. Acta Aeronautica et Astronautica Sinica, 2020,41(3):123328(in Chinese).
[13] TONG F L, LI X L, YUAN X X, et al. Incident shock wave and supersonic turbulent boundary-layer interactions near an expansion corner[J]. Computers and Fluids, 2020, 198:104385.
[14] BABINSKY H, MAKINSON N J, MORGAN C E. Micro-vortex generator flow control for supersonic engine inlets:AIAA-2007-0521[R]. Reston:AIAA, 2007.
[15] BABINSKY H, LI Y, FORD C W P. Micro-ramp control of supersonic oblique shock-wave/boundary-layer interactions[J]. AIAA Journal, 2009, 47(3):668-675.
[16] GIEPMAN R H M, SCHRIJER F F J, VAN OUDHEUSDEN B W. Flow control of an oblique shock wave reflection with micro-ramp vortex generators:Effects of location and size[J]. Physics of Fluids, 2014, 26(6):066101.
[17] WANG B, LIU W D, ZHAO Y X, et al. Experimental investigation of the micro-ramp based shock wave and turbulent boundary layer interaction control[J]. Physics of Fluids, 2012, 24:055110.
[18] JUNGE W J, MANGIAVACCHI N, AKHAVAN R. Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations[J]. Physics of Fluids A:Fluid Dynamics, 1992, 4(8):1605-1607.
[19] LAADHARI F, SKANDAJI L, MOREL R. Turbulence reduction in a boundary layer by a local spanwise oscillating surface[J]. Physics of Fluids,1994, 6(10):3218-3220.
[20] CHOI K S. Near-wall structure of turbulent boundary layer with spanwise-wall oscillation[J]. Physics of Fluids, 2002, 14(7):2530-2541.
[21] CHOI J, XU C X, SUNG H J. Drag reduction by spanwise wall oscillation in wall-bounded turbulent flows[J]. AIAA Journal, 2002, 40(5):840-850.
[22] DHANAK M R, SI C. On reduction of turbulent wall friction through spanwise oscillations[J]. Journal of Fluid Mechanics, 1999, 383(1):175-196.
[23] FANG J, LU L P, SHAO L. Heat transport mechanisms of low Mach number turbulent channel flow with spanwise wall oscillation[J]. Acta Mechanica Sinica, 2010, 26:391-399.
[24] YAO J, HUSSAIN F. Supersonic turbulent boundary layer drag control using spanwise wall oscillation[J]. Journal of Fluid Mechanics, 2019, 880:388-429.
[25] 童福林, 唐志共, 李新亮, 等. 压缩拐角激波与旁路转捩边界层干扰数值研究[J]. 航空学报, 2016, 37(12):3588-3604. TONG F L, TANG Z G, LI X L,et al. Numerical study of shock wave and bypass transitional boundary layer interaction in a supersonic compression ramp[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(12):3588-3604(in Chinese).
[26] PRIEBE S, WU M, MARTIN M P. Direct numerical simulation of a reflected shock wave turbulent boundary layer interaction[J]. AIAA Journal, 2009, 47(5):1173-1185.
[27] PIROZZOLI S, GRASSO F, GATSKI T B. Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M=2.25[J]. Physics of Fluids, 2004, 16(3):530-545.
[28] PIROZZOLI S, BERNARDINI M, GRASSO F. Direct numerical simulation of transonic shock/boundary layer interaction under conditions of incipient separation[J]. Journal of Fluid Mechanics, 2009, 657:361-393.
[29] WU X, MOIN P. Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer[J]. Journal of Fluid Mechanics, 2009, 630:5-41.
[30] PURTELL L P, KLEBANOFF P S, BUCKLEY F T. Turbulent boundary layer at low Reynolds number[J]. Physics of Fluids, 1981, 24(5):802-811.
[31] ERM L P, JOUBERT P N. Low Reynolds number turbulent boundary layers[J]. Journal of Fluid Mechanics, 1991, 230:1-44.
[32] PIROZZOLI S, BERNARDINI M, GRASSO F. Characterization of coherent vortical structures in a supersonic turbulent boundary layer[J]. Journal of Fluid Mechanics, 2008, 613:205-231.
[33] BOOKEY P B, WYCKHAM C, SMITS A J. Experimental investigations of Mach 3 shock wave turbulent boundary layer interaction:AIAA-2005-4899[R]. Reston:AIAA, 2005.
Outlines

/