Dissertation

Kinematics analysis of composite space capture systems based on 3RRS-Bricard

  • LIU Weihui ,
  • LI Xiaohui ,
  • WEN Wen ,
  • ZHAO Jingchao ,
  • YAO Yan'an ,
  • LI Ruiming
Expand
  • 1. Beijing Key Laboratory of Long-life Technology of Precise Rotation and Transmission Mechanisms, Beijing Institute of Control Engineering, Beijing 100094, China;
    2. School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China

Received date: 2020-03-02

  Revised date: 2020-03-28

  Online published: 2020-05-11

Supported by

Stable Support Fund of State Administration Science Technology and Industry or National Defense (HTKJ2019-KL502014); National Natural Science Foundation of China (51805025); CAST Foundation (2018CAST19)

Abstract

Aiming at cross-scale and multi-target spatial capture tasks, this study analyzes the kinematics of composite capture systems by combining the folding and geometric characteristics of Bricard and 3RRS mechanisms. Based on the analysis of the freedom degree and configuration characteristics of the capture system, the kinematic decoupling of the system is realized by constructing the transformation relationship between Bricard and 3RRS. According to the six-prism model and with the introduction of the Bricard virtual vertex, a kinematic solution method for the composite space capture system is designed. The kinematic and dynamic models of the capture system are built in the simulation environment, and the trajectory tracking experiments conducted for the dynamic capture targets. The effectiveness and advancement of the kinematic algorithm are verified through comparison with the Damped Least Squares (DLS) method based on the closed-loop constraint. The experimental results show that the capture system can achieve smooth cooperative control, with the position tracking accuracy and the attitude accuracy better than 4 mm and 0.035 rad, respectively.

Cite this article

LIU Weihui , LI Xiaohui , WEN Wen , ZHAO Jingchao , YAO Yan'an , LI Ruiming . Kinematics analysis of composite space capture systems based on 3RRS-Bricard[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(1) : 523922 -523922 . DOI: 10.7527/S1000-6893.2020.23922

References

[1] SHAN M, GUO J, GILL E. Review and comparison of active space debris capturing and removal methods[J]. Progress in Aerospace Sciences, 2015, 80:18-32.
[2] 梁斌, 杜晓东, 李成, 等. 空间机器人非合作航天器在轨服务研究进展[J]. 机器人, 2012, 34(2):116-130. LIANG B, DU X D, LI C, et al. Space robot on-orbit servicing for non-cooperative spacecraft[J]. Robot, 2012, 34(2):116-130(in Chinese).
[3] BOSSE A B, HENSHAW C G, PIPITONE F, et al. SUMO:Spacecraft for the universal modification of orbits[C]//Proceedings of SPIE-Spacecraft Platforms and Infrastructure. Bellingham:The International Society for Optical Engineering, 2004:36-46.
[4] ÉRIC M, ÉRICK D, PIEDBOEUF J C, et al. The TECSAS mission from a Canadian perspective[C]//ISAIRAS 2005 Conference. Munich:Canadian Space Agency, 2005:3-11.
[5] ELLERY A. A robotics perspective on human spaceflight[J]. Earth Moon & Planets, 1999, 87(3):173-190.
[6] 翟光, 仇越, 梁斌, 等. 在轨捕获技术发展综述[J]. 机器人, 2008, 30(5):85-98. ZHAI G, QIU Y, LIANG B, et al. Development of on orbit capture technology[J]. Robot, 2008, 30(5):85-98(in Chinese).
[7] 郭金伟, 黄志荣, 许允斗, 等. 一类基于四面体组合单元的模块化构架式可展开天线机构[J]. 航空学报, 2020, 41(3):423219. GUO J W, HUANG Z R, XU Y D, et al. Deployable antenna mechanism with class of modular truss based on tetrahedral combination unit[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3):423219(in Chinese).
[8] CURTIS S, BRANDT M, BOWERS G, et al. Tetrahedral robotics for space exploration[J]. IEEE Aerospace & Electronic Systems Magazine, 2007, 22(6):22-30.
[9] 姚燕安, 张迪, 李晔卓, 等. 多面体网型空间抓捕机构的设计与分析[J]. 南京航空航天大学学报, 2019, 51(3):263-271. YAO Y A, ZHANG D, LI Y Z, et al. Design and analysis of polyhedral net space capture mechanism[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(3):263-271(in Chinese).
[10] 刘洋, 姚燕安, 何妍颖. 变拓扑3-RSR多面体对接机构的设计与研究[J]. 载人航天, 2018, 24(1):61-66. LIU Y, YAO Y A, HE Y Y. Design and research of topological 3-RSR polyhedron docking mechanism[J]. Manned Spaceflight, 2018, 24(1):61-66(in Chinese).
[11] SACHIN C, IOAN S, STEVE C. Moveit![ROS topics] [J]. IEEE Robotics & Automation Magazine, 2012, 19(1):18-19.
[12] 郭玉, 李彬, 赵新华. 3-RRS并联机构运动学传动性能分析[J]. 机械设计, 2015, 32(3):72-76. GUO Y, LI B, ZHAO X H. Analysis on transmission performance of 3-RRS parallel mechanism[J]. Journal of Machine Design, 2015, 32(3):72-76(in Chinese).
[13] 倪仕全, 田大鹏, 石磊. 紧凑型3-RRS并联机构运动学仿真及控制研究[J]. 机电工程, 2019, 36(11):1172-1176. NI S Q, TIAN D P, SHI L. Kinematics simulation and control of compact 3-RRS parallel mechanism[J]. Journal of Mechanical & Electrical Engineering, 2019, 36(11):1172-1176(in Chinese).
[14] 李大海, 李瑞琴, 宋胜涛, 等. 3-RRS球面并联机构的位置解及工作空间研究[J]. 机械传动, 2016, 40(10):17-23. LI D H, LI R Q, SONG S T, et al. Study on the position solution and workspace of 3-RRS spherical parallel mechanism[J]. Journal of Mechanical Transmission,2016, 40(10):17-23(in Chinese).
[15] 马春生, 汪辉, 李瑞琴, 等. 一种3-RRS并联机构位置分析的代数消元法[J]. 机械设计与研究, 2016, 32(4):5-9. MA C S, WANG H, LI R Q, et al. Position analysis of a kind of 3-RRS parallel mechanism based on algebraic elimination method[J]. Machine Design and Research, 2016, 32(4):5-9(in Chinese).
[16] 艾青林, 祖顺江, 胥芳. 并联机构运动学与奇异性研究进展[J]. 浙江大学学报(工学版), 2012, 46(8):1345-1359. AI Q L, ZU S J, XU F. Review of kinematics and singularity of parallel manipulator[J]. Journal of Zhejiang University (Engineering Science), 2012, 46(8):1345-1359(in Chinese).
[17] ARAI T, CLEARY K, NAKAMURA T, et al. Design, analysis and construction of a prototype parallel link manipulator[C]//IEEE International Workshop on Intelligent Robots & Systems 90 Towards a New Frontier of Applications. Piscataway:IEEE Press, 1990:205-212.
[18] 高健, 吴洪涛. 某一特殊普通面对称Bricard机构及其分析[J]. 应用科技, 2011, 38(1):54-58. GAO J, WU H T. One special type of the general plane-symmetric Bricard linkages and its analysis[J]. Applied Science and Technology, 2011, 38(1):54-58(in Chinese).
[19] 马艳, 张群, 李锐明, 等. 可折展空间八转动副连杆捕获机构的设计[J]. 西安交通大学学报, 2020, 54(3):179-187. MA Y, ZHANG Q, LI R M, et al. Design and analysis of foldable capture mechanism based on spatial 8-rotation linkages[J]. Journal of Xi'an Jiaotong University, 2020, 54(3):179-187(in Chinese).
[20] SHANG H, WEI D W, KANG R J, et al. Gait analysis and control of a deployable robot[J]. Mechanism & Machine Theory, 2017, 120:107-119.
[21] ANGELES J, KECSKEMETHY A. Kinematics and dynamics of multi-body systems[M]. Vienna:Springer Vienna, 1995:75-165.
[22] LIU F, ZHANG J, HU Q. A modified constraint force algorithm for flexible multibody dynamics with loop constraints[J]. Nonlinear Dynamics, 2017, 90(3):1885-1906.
[23] ROHMER E, SINGH S P N, FREESE M. V-REP:A versatile and scalable robot simulation framework[C]//Intelligent Robots and Systems (IROS) 2013. Piscataway:IEEE Press, 2013:1321-1326.
[24] WAMPLER C. Manipulator inverse kinematic solutions based on vector formulations and damped least-squares methods[J]. IEEE Transactions on Systems Man & Cybernetics, 1986, 16(1):93-101.
[25] LIU S Z, YU Y Q, ZHU Z C, et al. Dynamic modeling and analysis of 3-RRS parallel manipulator with flexible links[J]. Journal of Central South University of Technology, 2010, 17(2):323-331.
[26] CHEN Y, YOU Z, TARNAI T. Threefold-symmetric Bricard linkages for deployable structures[J]. International Journal of Solids & Structures, 2005, 42(8):2287-2301.
[27] 商浩. 基于Bricard机构的可展机器人[D]. 天津:天津大学, 2018:24-33. SHANG H. A deployable robot based on the Bricard linkage[D]. Tianjin:Tianjin University, 2018:24-33(in Chinese).
[28] MORTIMER M, HORAN B, JOORDENS M, et al. Searching Baxter's URDF robot joint and link tree for active serial chains[C]//2015 10th System of Systems Engineering Conference (SoSE). Piscataway:IEEE Press, 2015:428-433.
Outlines

/