Special Topic of Guidance and Control Technology for Aerospace Vehicles

TSTO vehicle first-stage return trajectory: Optimization and onboard generation

  • ZHANG Rouhe ,
  • FAN Yazhuo ,
  • SHE Zhiyong ,
  • CUI Naigang
Expand
  • 1. School of Astronautics, Harbin Institute of Technology, Harbin 150001, China;
    2. Beijing Aerospace Technology Institute, Beijing 100074, China

Received date: 2020-01-30

  Revised date: 2020-02-18

  Online published: 2020-05-11

Abstract

First-stage return trajectory optimization and onboard generation of the horizontal launch Two-Stage To Orbit (TSTO) reusable vehicles are studied. The optimization strategy of the first stage return trajectory is firstly proposed: the lateral profile is given prior to solution of the three-dimensional trajectory by piecewise optimization. A lateral bank angle profile is designed to meet the large steering requirements during the first stage reentry process. In view of the remarkable characteristics of aerodynamic variations in the wide velocity domain of the first stage, the multi-segment optimization strategy is designed to avoid repeated trajectory jumps, and Gauss Pseudospectral Method (GPM) is used to design the three-dimensional trajectory. To solve the initial state deviation caused by separation disturbance of the TSTO vehicle, the parameter space of the Adaptive Multivariate Pseudospectral Interpolation (AMPI) method is extended to generate the onboard trajectory for the first stage. The simulation results show that the proposed lateral bank angle profile can ensure the alignment of the flight course with the landing field without the need for repeated reversals of the bank angle, and the multi-segment optimal strategy can ensure a stable trajectory, and the AMPI method can generate onboard trajectory quickly and accurately under the condition of large initial deviations.

Cite this article

ZHANG Rouhe , FAN Yazhuo , SHE Zhiyong , CUI Naigang . TSTO vehicle first-stage return trajectory: Optimization and onboard generation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(11) : 623856 -623856 . DOI: 10.7527/S1000-6893.2020.23856

References

[1] WALDMAN B J, HARSHA P T. NASP:Focus on technology[C]//4th Symposium on Multidisciplinary Analysis and Optimization. Reston:AIAA, 1992.
[2] KANIA P. The German hypersonics technology program-overview[C]//International Aerospace Planes and Hypersonics Technologies. Reston:AIAA, 1995.
[3] ROGER L, ALAN B. The Skylon project[C]//17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston:AIAA, 2011.
[4] OLDS J R, LEDSINGER L, BRADFORD J, et al. Stargazer:A TSTO Bantam-X vehicle concept utilizing rocket-based combined cycle propulsion[C]//9th International Space Planes and Hypersonic Systems and Technologies Conference. Reston:AIAA, 1999.
[5] BRADFORD J E, CHARANIA A, WALLACE J. Quicksat:A two-stage to orbit reusable launch vehicle utilizing air-breathing propulsion for responsive space access[C]//Space 2004 Conference and Exhibit. Reston:AIAA, 2004.
[6] TIMOTHY K, JOHN R, VIRGIL H, et al. Azetc:A TSTO hypersonic vehicle concept utilizing TBCC and HEDM propulsion technologies[C]//40th AIAA/ASME/SAE Joint Propulsion Conference and Exhibit. Reston:AIAA, 2004.
[7] BRADFORD J E, OLDS J R, WALLACE J E. Concept assessment of a hydrocarbon fueled RBCC-powered military spaceplane[C]//54th JANNAF Propulsion Meeting and 5th Modeling and Simulation. Reston:AIAA, 2007.
[8] AJAY K, JOHN L, CHRISTOPHER T, et al. A reusable, rocket and airbreathing combined cycle hypersonic vehicle design for access-to-space[C]//AIAA Space 2010 Conference & Exposition. Reston:AIAA, 2010.
[9] 阮建刚, 何国强, 吕翔. RBCC-RKT两级入轨飞行器飞行轨迹优化方法[J]. 航空学报, 2014, 35(5):1284-1291. RUAN J G, HE G Q, LYU X. Trajectory optimization method in two-stage-to-orbit RBCC-RKT launch vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(5):1284-1291(in Chinese).
[10] 阮建刚, 何国强, 吕翔. RBCC-RKT两级入轨飞行器起飞质量估算方法[J]. 推进技术, 2013, 34(5):603-608. RUAN J G, HE G Q, LV X. Takeoff mass estimation methods in two-stage-to-orbit RBCC-RKT launch vehicle[J]. Journal of Propulsion Technology, 2013, 34(5):603-608(in Chinese).
[11] 王永圣, 徐颖珊, 周宁, 等. 两级入轨火箭动力二级上升轨迹设计方法[J]. 战术导弹技术, 2017(4):52-56. WANG Y S, XU Y S, ZHOU N, et al. Research on climb trajectory design of TSTO rocket powered second stage[J]. Tactical Missile Technology, 2017(4):52-56(in Chinese).
[12] CALDWELL R A. Weight analysis of two-stage-to-orbit reusable launch vehicles for military applications[D]. Wright-Patterson AFB:Air Force Institute of Technology, 2005:78-82.
[13] 姜亚中, 蒋崇文, 高振勋, 等. 水平起降两级入轨系统的质量估算方法及应用[J]. 北京航空航天大学学报, 2014, 40(4):473-478. JIANG Y Z, JIANG C W, GAO Z X, et al. Mass estimation method and its application for horizontal takeoff horizontal landing two stage to orbit system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(4):473-478(in Chinese).
[14] 陈兵, 龚春林, 唐硕, 等. 一种火箭基组合循环动力空天飞行器总体设计分析[J]. 载人航天, 2019, 25(3):378-383. CHEN B, GONG C L, TANG S, et al. Overall design and analysis of rocket based combined cycle powered launch vehicle[J]. Manned Spaceflight, 2019, 25(3):378-383(in Chinese).
[15] SHEN Z J, LU P. Onboard generation of three-dimensional constrained entry trajectories[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(1):111-121.
[16] RAHIMI A, KUMAR K D, ALIGHANBARI H. Particle swarm optimization applied to spacecraft reentry trajectory[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(1):307-310.
[17] LU P. Entry guidance:A unified method[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(3):713-728.
[18] 雍恩米, 唐国金, 陈磊. 基于Gauss伪谱方法的高超声速飞行器再入轨迹快速优化[J]. 宇航学报, 2008, 29(6):1766-1772. YONG E M, TANG G J, CHEN L. Fast reentry trajectory optimization of hypersonic vehicle based on Gauss pseudospectral method[J]. Journal of Astronautics, 2008, 29(6):1766-1772(in Chinese).
[19] 周文雅, 聂振焘, 刘凯. 高度-速度剖面内再入轨迹快速规划[J]. 宇航学报, 2019, 40(11):1341-1347. ZHOU W Y, NIE Z T, LIU K. Rapid planning of reentry trajectory in height-velocity profile[J]. Journal of Astronautics, 2019, 40(11):1341-1347(in Chinese).
[20] 唐硕, 龚春林, 陈兵. 组合动力空天飞行器关键技术[J]. 宇航学报, 2019, 40(10):1103-1114. TANG S, GONG C L, CHEN B. The key technologies for aerospace with combined cycle engine[J]. Journal of Astronautics, 2019, 40(10):1103-1114(in Chinese).
[21] 王元靖, 吴继飞, 陶洋, 等. 高超声速多体干扰与分离试验[J]. 航空动力学报, 2010, 25(4):902-906. WANG Y J, WU J F, TAO Y, et al. Hypersonic experimental investigation on interference and stage separation of a multi-body system[J]. Journal of Aerospace Power, 2010, 25(4):902-906(in Chinese).
[22] 王志刚, 袁建平, 陈士橹. 高超声速航天器最优再入大回转轨迹与控制[J]. 弹道学报, 2005, 17(2):60-64. WANG Z G, YUAN J P, CHEN S L. Optimal reentry volte-face trajectory and control for hypersonic spacecraft[J]. Journal of Ballistics, 2005, 17(2):60-64(in Chinese).
[23] 梅映雪, 冯玥, 王容顺, 等. 高超声速飞行器多约束再入轨迹快速优化[J]. 宇航学报, 2019, 40(7):758-767. MEI Y X, FENG Y, WANG R S, et al. Fast optimization of reentry trajectory for hypersonic vehicles with multiple constraints[J]. Journal of Astronautics, 2019, 40(7):758-767(in Chinese).
[24] 胡锦川, 张晶, 陈万春. 高超声速飞行器平稳滑翔弹道解析解及其应用[J]. 北京航空航天大学学报, 2016, 42(5):961-968. HU J C, ZHANG J, CHEN W C. Analytical solutions of steady glide trajectory for hypersonic vehicle and planning application[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(5):961-968(in Chinese).
[25] JORRIS T R, COBB R G. Three-dimensional trajectory optimization satisfying waypoint and no-fly zone constraints[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(2):551-572.
[26] ZHANG D, LI L, WANG Y. On-line reentry guidance algorithm with both path and no-fly zone constraints[J]. Acta Astronautica, 2015, 117:243-253.
[27] 王劲博. 可重复使用运载火箭在线轨迹优化与制导方法研究[D]. 哈尔滨:哈尔滨工业大学, 2019:35-36. WANG J B. Research on online trajectory optimization and guidance methods for reusable rocket[D]. Harbin:Harbin Institute of Technology, 2019:35-36(in Chinese).
[28] SAGLIANO M, MOOIJ E, THEIL S. Onboard trajectory generation for entry vehicles via adaptive multivariate pseudospectral interpolation[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(2):466-476.
[29] GARG D, PATTERSON M, HAGE W W. A unified framework for the numerical solution of optimal control problems using pseudospectral methods[J]. Automatica, 2010, 46(11):1843-1851.
[30] 李昱辉. 高超声速飞行器控制一体化设计中的模型分析方法研究[D]. 南京:南京航空航天大学, 2018:24-25. LI Y H. Model analysis methods for control integrated design of hypersonic vehicles[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2018:24-25(in Chinese).
Outlines

/