Special Topic of Electric Aircraft

Energy efficiency optimization method for electric aircraft propulsion system

  • WANG Shuli ,
  • SUN Jinbo ,
  • KANG Guiwen ,
  • MA Shaohua
Expand
  • 1. Liaoning General Aviation Academy, Shenyang 110136, China;
    2. Rhyxeon General Aircraft Co., Ltd. (RGAC), Shenyang 110131, China;
    3. School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China;
    4. Key Laboratory of General Aviation, Shenyang Aerospace University, Shenyang 110136, China

Received date: 2020-03-07

  Revised date: 2020-03-31

  Online published: 2020-04-25

Supported by

Foundation Department of Education Liaoning Province (LZGD2017041)

Abstract

Electric propulsion systems provide power for electric aircraft, while the energy density of batteries limits the endurance capacity of electric aircraft. It is, therefore, of essential significance to optimize the energy efficiency of electric propulsion systems, improving the efficiency, reducing the system loss and consequently increasing the endurance time of electric aircraft. For a given two-seater controllable pitch propeller electric aircraft, a system loss model of the electric propulsion system in takeoff and cruise stages is established according to the mission profile of the electric aircraft. A novel energy efficiency optimization method tailored for controllable fixed pitch propeller electric aircraft is proposed with the pitch angle of the propeller with adjustable pitch as the optimal variable and minimizing the total energy consumption of one flight as the goal. To verify the effectiveness of this method, a prototype test platform is built, followed by a prototype test. Experimental results suggest that the energy efficiency optimization method can achieve better energy efficiency while reducing the energy consumption by more than 8%.

Cite this article

WANG Shuli , SUN Jinbo , KANG Guiwen , MA Shaohua . Energy efficiency optimization method for electric aircraft propulsion system[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(3) : 623942 -623942 . DOI: 10.7527/S1000-6893.2020.23942

References

[1] GOHARDANI A S, DOULGERIS G, SINGH R. Challenges of future aircraft propulsion:A review of distributed propulsion technology and its potential application for the all-electric commercial aircraft[J]. Progress in Aerospace Sciences, 2011, 47(5):369-391.
[2] ROSERO J A, ORTEGA J A, ALDABAS E, et al. Moving towards a more electric aircraft[J]. IEEE Aerospace and Electronic Systems Magazine, 2007, 22(3):3-9.
[3] 王翔宇. 电动飞行与推进系统变革[J]. 航空动力, 2019(3):43-47. WANG X Y. Electric flight and the technological change of propulsion system[J]. Aerospace Power, 2019(3):43-47(in Chinese).
[4] 黄俊, 杨凤田. 新能源电动飞机发展与挑战[J]. 航空学报, 2016, 37(1):57-68. HUANG J, YANG F T. Development and challenge of electric aircraft with new energies[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):57-68(in Chinese).
[5] MA S H, WANG S L, ZHANG C N, et al. A method to improve the efficiency of an electric aircraft propulsion system[J]. Energy, 2017, 140:436-443.
[6] 康桂文, 胡雨, 李亚东, 等. 超轻型电动飞机电动力系统的参数匹配[J]. 航空动力学报, 2013, 28(12):2641-2647. KANG G W, HU Y, LI Y D, et al. Parameters matching of ultralight electric aircraft propulsion system[J]. Journal of Aerospace Power, 2013, 28(2):2641-2647(in Chinese).
[7] 刘福佳, 杨凤田, 刘远强, 等. 电动轻型飞机电推进系统选型与参数匹配[J]. 南京航空航天大学学报, 2019, 51(3):350-356. LIU F J, YANG F T, LIU Y Q, et al. Type selection and parameter matching of electric light aircraft propulsion system[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(3):350-356(in Chinese).
[8] 腾飞. 电动飞机主驱动永磁同步电动机损耗抑制技术研究[D]. 沈阳:沈阳航空航天大学, 2019:1-20. TENG F. Research on loss suppression technology of main driver permanent magnet synchronous motor for electric aircraft[D]. Shenyang:Shenyang Aerospace University, 2019:1-20(in Chinese).
[9] 王森, 赵阳阳, 鲍洁秋, 等. 电动飞机永磁电机主绝缘温度场研究[J]. 绝缘材料, 2017, 50(10):31-36. WANG S, ZHAO Y Y, BAO J Q, et al. Research on main insulation temperature field of permanent magnet motor for electric aircraft[J]. Insulating Materials, 2017, 50(10):31-36(in Chinese).
[10] 王书礼, 马少华, 张硕. 电动飞机电机控制器风冷散热结构的计算与改进[J]. 电机与控制应用, 2019, 46(6):1-7. WANG S L, MA S H, ZHANG S. Calculation and improvement for air cooling structure of electrical aircraft motor controller[J]. Electric Machines & Control Application, 2019, 46(6):1-7(in Chinese).
[11] 项松, 杨康, 佟刚, 等. 两种不同弦长螺旋桨的风洞试验及分析[J]. 试验力学, 2017, 32(2):273-278. XIANG S, YANG K, TONG G, et al. Wind-tunnel experiment and analysis for two kinds of propeller with different chord lengths[J]. Journal of Experiment Mechanics, 2017, 32(2):273-278(in Chinese).
[12] 刘远强, 项松, 佟刚, 等. 某电动飞机螺旋桨气动特性数值模拟与风洞试验[J]. 飞行力学, 2017, 35(3):81-84. LIU Y Q, XIANG S, TONG G, et al. Aerodynamic characteristics numerical simulation and wind tunnel test of an electric powered aircraft propeller[J]. Flight Dynamics, 2017, 35(3):81-84(in Chinese).
[13] 孔祥浩, 张卓然, 陆嘉伟, 等. 分布式电推进飞机电力系统研究综述[J]. 航空学报, 2018, 39(1):021651. KONG X H, ZHANG Z R, LU J W, et al. Review of electric power system of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):021651(in Chinese).
[14] WEI K X, ZHANG C N, GONG Z J, et al. The IGBT losses analysis and calculation of inverter for two-seat electric aircraft application[J].Energy Procedia, 2017, 105:2623-2628.
[15] 王书礼, 马少华, 张硕. 突风气象条件下电动飞机电推进系统PI控制参数的设定方法[J]. 电机与控制应用, 2019, 46(5):83-88. WANG S L, MA S H, ZHANG S. Setting method of PI control parameters for electric propulsion system of electric aircraft under gust encounters[J]. Electric Machines & Control Application, 2019, 46(5):83-88(in Chinese).
[16] 项松, 杨凤田, 吴江, 等. 某型两叶螺旋桨的设计及风洞试验[J]. 飞行力学, 2019, 37(2):83-85. XIANG S, YANG F T, WU J, et al. Design and wind tunnel test of a two-blade propeller[J]. Flight Dynamics, 2019, 37(2):83-85(in Chinese).
[17] 郭家豪, 周洲, 范中允. 一种耦合CFD修正的螺旋桨快速设计方法[J]. 航空学报, 2020, 41(2):123216. GUO J H, ZHOU Z, FAN Z Y. A quick design method of propeller coupled with CFD correction[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2):123216(in Chinese).
[18] 刘沛清. 空气螺旋桨理论及其应用[M]. 北京:北京航空航天大学出版社, 2006:40-55. LIU P Q. Theory and application of air propeller[M]. Beijing:Beihang University Press, 2006:40-55(in Chinese).
[19] WANG S L, ZHANG S, MA S H. An energy efficiency optimization method for fixed pitch propeller electric aircraft propulsion systems[J]. IEEE Access, 2019, 7:159986-159993.
[20] SACHS G. Performance capabilities of aircraft with electric propulsion system[C]//Proceedings of the Mini Conference on Vehicle System Dynamics, Identification and Anomalies, 2012:447-460.
[21] American Society for Testing and Materials. Standard specification for design and performance of a light sport airplane:F2245-11[S]. Washington, D.C.:Available from Federal Aviation Administration, 2011.
[22] 项松, 王吉, 张利国, 等. 一种高效螺旋桨设计方法[J]. 航空动力学报, 2015, 30(1):136-141. XIANG S, WANG J, ZHANG L G, et al. A design method for high efficiency propeller[J]. Journal of Aerospace Power, 2015, 30(1):136-141(in Chinese).
Outlines

/