Special Topic of Starlight Navigation Technology

Necessity and technical characteristics of developing single-soldier star sensor navigation equipment

  • ZHENG Yong ,
  • LIU Xinjiang ,
  • LI Chonghui
Expand
  • 1. College of Geospatial Information, Information Engineering University, Zhengzhou 450001, China;
    2. Troop 32021, Tianjin 300140, China

Received date: 2019-11-29

  Revised date: 2020-02-04

  Online published: 2020-04-25

Supported by

National Natural Science Foundation of China (11673076)

Abstract

Starlight navigation is of highly strategic significance because it is not subject to electromagnetic interference and can provide absolute attitude information. Currently, star sensors are mainly developed for aerospace navigation. The necessity, the technical difficulties, and the effects to be achieved of applying them to single-soldier navigation still remain unclear. This paper first discusses the necessity of developing single-soldier star sensor navigation equipment: It can serve as guarantee equipment when other navigation equipment fails because it cannot be damaged by electromagnetic interferences; Its high directional accuracy can compensate for the orientation deficiency of single soldier satellite navigation equipment; It enables all-time, all-weather navigation with its ability to overcome certain meteorological factors. Technical characteristics of the single-soldier star sensor navigation are compared with those of the aerospace star sensor navigation, satellite navigation, and astrogeodesy. Key technologies in developing single-soldier star sensor navigation equipment are then presented, including reduction of meteorological influences, long-term maintenance of time datum and power supply, balance of system detection performance and system miniaturization. The results provide reference for the development of single-soldier star sensor navigation technology and the design and development of single-soldier star sensor navigation system.

Cite this article

ZHENG Yong , LIU Xinjiang , LI Chonghui . Necessity and technical characteristics of developing single-soldier star sensor navigation equipment[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(8) : 623693 -623693 . DOI: 10.7527/S1000-6893.2020.23693

References

[1] WU X J,WANG X L.A SINS/CNS deep integrated navigation method based on mathematical horizon reference[J].Aircraft Engineering and Aerospace Technology, 2011, 83(1):26-34.
[2] ZHAN Y H, ZHENG Y, LI C H, et al. High-accuracy absolute positioning for the stationary planetary rover by integrating the star sensor and inclinometer[J]. Journal of Field Robotics, 2020, 34(1):1-14.
[3] SEKIDO M, ICHIKAWA R, YOSHIKAWA M, et al. Evaluation of differential VLBI phase delay observable for Spacecraft Navigation-ΔVLBI observation of Hayabusa at touchdown to ITOKAWA[C]//SICE Annual Conference 2007, 2007:3029-3036.
[4] EMADZADEH A A, SPEYER J L. Navigation in space by X-ray pulsars[M]. 2011:1-118.
[5] KIM Y H. Development of daytime observation model for star sensor and centroiding performance analysis[J]. Journal of Astronomy & Space Sciences, 2005, 22(3):273-282.
[6] 刘春保. "伽利略"系统故障事件分析[J]. 国际太空, 2019(8):28-31. LIU C B. Failure event analysis of Galileo system[J]. Space International, 2019(8):28-31(in Chinese).
[7] GOULDSWORTHY S N, GROVES P D, WELLS M. High-fidelity model development for navigation warfare simulation studies[C]//Proceedings of the 15th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2002), 2002:643-654.
[8] WILLIAMS G. China's space and counterspace programs_2015[R]. 2015.
[9] BRYNE T H, FOSSEN T I, JOHANSEN T A. Design of inertial navigation systems for marine craft with adaptive wave filtering aided by triple-redundant sensor packages[J]. International Journal of Adaptive Control & Signal Processing, 2017, 31(4):522-544.
[10] 薛连莉, 沈玉芃, 徐月. 2019年国外惯性技术发展与回顾[J]. 导航定位与授时, 2020, 7(1):60-66. XUE L L, SHEN Y F, XU Y. Development and review of inertial technology abroad in 2019[J]. Navigation Positioning and Timing, 2020, 7(1):60-66(in Chinese).
[11] 王洪先. 陆用惯性导航系统技术发展综述[J]. 光学与光电技术, 2019, 17(6):77-85. WANG H X. Summary of the technology development of land inertial navigation system[J]. Optics & Optoelectronic Technology, 2019, 17(6) 77-85(in Chinese).
[12] YOUNG E F, MELLON R, PERCIVAL J W, et al. Sub-arcsecond performance of the ST5000 star tracker on a balloon-borne platform[C]//2012 IEEE Aerospace Conference, 2012.
[13] ZIEBART M,CROSS P. LEO GPS attitude determination algorithm for a micro-satellite using boom-arm deployed antennas[J]. GPS Solutions,2003,6(4):242-256.
[14] 杨洁,王新龙,陈鼎, 等. GNSS定姿技术发展综述[J].航空兵器,2018(6):16-25. YANG J,WANG X L,CHEN D,et al.Review on the development of GNSS attitude determination technology[J]. Aero Weaponry,2018(6):16-25(in Chinese).
[15] GLADILIN V N. A possibility to determine the latitude and the polar flattening of the earth using the gyroscopic theodolite[J]. Astronomical Schools Report, 2015, 11(1):69-74.
[16] 张则宇, 刘智超, 吴太旗, 等. GT3H陀螺经纬仪的质量检验[J],中国惯性学报,2013,21(5):697-700. ZHANG Z Y, LIU Z C, WU T Q, et al. Quality test of GT3H gyrotheodolite[J]. Journal of Chinese Inertial Technology, 2013,21(5):697-700(in Chinese).
[17] WANG L, GROVES P D, ZIEBART M K. Shadow matching:Improving smartphone GNSS positioning in urban environments[C]//CSNC 2013 Proceedings,2013:613-621.
[18] PNI Sensor Corporation. TargetPoint DMC user manual[M]. 2013.
[19] Trex Enterprises Corporation. Daytime stellar imager for attitude determination:USA,US 7,349,803 B2[P]. 2008-3-25.
[20] 詹银虎, 郑勇, 张超, 等. 超大视场太阳敏感器图像质心提取算法[J]. 测绘学报, 2015, 44(10):1078-1084. ZHAN Y H,ZHENG Y, ZHANG C, et al. Image centroid algorithms for sun sensors with super wide field of view[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(10):1078-1084(in Chinese).
[21] ZHAN Y H, ZHENG Y, ZHANG C, et al. Astronomical zimuth determination by lunar observations[J]. Journal of Surveying Engineering-ASCE, 2016, 142(2):04015009.1-04015009.7.
[22] PU J Y, LI C H, ZHENG Y, et al. Astronomical Vessel heading determination based on simultaneously imaging the moon and the horizon[J]. Journal of Navigation, 2018, 71(1):1-16.
[23] LI C H, ZHENG Y, ZHANG C, et al. Astronomical vessel position determination utilizing the optical super wide angle lens camera[J]. The Journal of Navigation, 2014, 67(4):633-649.
[24] SCHRIJVER H. The Hipparcos Catalogue[M]. 1997.
[25] SOMIESKI A E. Astrogeodetic geoid and isostatic considerations in the North Aegean Sea, Greece[D]. 2008:95-96.
[26] 董鸿闻, 钟维玲. 我国50年来高精度大地天文测量[J].测绘标准化, 2002, 18(31):26-31. DONG H W,ZHONG W L. Chinese high-precision geodetic astronomical measurements of 50 years[J]. Standardization of Surveying and Mapping, 2002, 18(31):26-31(in Chinese).
[27] HIRT C, BÜRKI B, SOMIESKI A, et al. Modern determination of vertical deflections using digital zenith cameras[J]. Journal Surveying Engineering, 2010, 136(1):1-12.
[28] DIETZ K L. Daytime aspect camera for balloon altitudes[J]. Optical Engineering, 2002, 41(10):2641.
[29] PETER D N. Atmospheric refraction effects in earth remote sensing[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 1999(54):360-373.
[30] ROBINSON E C, BASS J N, BHAVNANI K H, et al. Models of the near-space geophysical environment:PL-TR-97-2089[R]. 1997.
[31] 程旋, 肖存英, 胡雄. 临近空间大气环境对高超声速飞行器气动特性的影响研究进展[J]. 飞航导弹, 2018(5):22-28. CHENG X, XIAO C Y, HU X. Research advance on the influence of near space atmosphere on the aerodynamic characteristics of hypersonic vehicles[J]. Aerodynamic Missile Journal, 2018(5):22-28(in Chinese).
[32] STRAESSLE R, PELLATON M C. AFFOLDERBACH C, et al. Low-temperature indium-bonded alkali vapor cell for chip-scale atomic clocks[J]. Helsinki Monitor, 2013, 113(6):287-296.
[33] 杜润昌,杨林,赵海清. 芯片原子钟的现状与发展[J].导航定位与授时, 2018, 2(2):35-38. DU R C,YANG L,ZHAO H Q. Current status and development of chip scale atomic clocks[J]. Navigation Positioning& Timing, 2018, 2(2):35-38(in Chinese).
Outlines

/