Fluid Mechanics and Flight Mechanics

Infrared decoy modeling method based on enhanced discrete phase model and chemical combustion

  • YANG Chunling ,
  • ZHANG Zhendong ,
  • ZHANG Tongyiyu
Expand
  • School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China

Received date: 2019-11-27

  Revised date: 2019-12-19

  Online published: 2020-04-25

Supported by

Aeronautical Science Foundation of China (20170177001)

Abstract

Infrared (IR) decoys are a main IR countermeasure weapon. Establishing an accurate model of infrared decoy missiles will play an important role in the research of infrared guidance algorithms. However, the current Computational Fluid Dynamics (CFD) model of infrared decoys does not take the influence of infrared pyrotechnics combustion into consideration, directly leading to the decline in IR decoy modeling accuracy theoretically. Aiming at this problem, this study establishes a more accurate IR decoy simulation model by adding a chemical combustion phase based on the enhanced Discrete Phase Model (DPM) IR decoy model. Results show that the simulation accuracy of graphic characteristics of the new model is obviously improved compared to the traditional one.

Cite this article

YANG Chunling , ZHANG Zhendong , ZHANG Tongyiyu . Infrared decoy modeling method based on enhanced discrete phase model and chemical combustion[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(12) : 123682 -123682 . DOI: 10.7527/S1000-6893.2020.23682

References

[1] TITTERTON D H. A review of the development of optical countermeasures[C]//SPIE Proceedings. Bellingham:SPIE, 2004:5615.
[2] 邹涛, 王超哲, 童中翔, 等. 箔片型红外面源诱饵扩散规律[J]. 航空学报, 2016, 37(9):2634-2645. ZOU T, WANG C Z, TONG Z X, et al. Diffusion rule of foil-surface-type infrared decoy[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2634-2645(in Chinese).
[3] REEVES W T. Particle systems-A technique for modeling a class of fuzzy objects[J]. Computer Graphics, 1983, 17(3):359-376.
[4] INAKAGE M. A simple model of flames[C]//CG International'90. Tokyo:Springer Japan, 1990:71-81.
[5] NGUYEN D Q, FEDKIW R, JENSEN H W. Physically based modeling and animation of fire[J]. ACM Transactions on Graphics, 2002, 21(3):721-728.
[6] REEVES W T. Particle systems-A technique for modeling a class of fuzzy objects[J]. ACM Transactions on Graphics, 1983, 2(2):359-376.
[7] UNBESCHEIDEN M, TREMBILSKI A. Cloud simulation in virtual environments[C]//Proceedings of Virtual Reality Annual International Symposium. Piscataway:IEEE Press, 1998:98-104.
[8] 高辉, 赵松庆, 吴根水, 等. 基于电阻阵列的红外场景生成技术[J]. 航空学报, 2015, 36(9):2815-2827. GAO H, ZHAO S Q, WU G S, et al. Infrared radiation scene generation technology based on resistor array[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9):2815-2827(in Chinese).
[9] MA D L, ZHAO Y P, QIAO Y H, et al. Effects of relative thickness on aerodynamic characteristics of air-foil at a low Reynolds number[J]. Chinese Journal of Aeronautics, 2015, 22(4):1003-1015.
[10] WU X, ZHANG J Q, HUANG X, et al. GPU-accelerated real-time IR smoke screen simulation and assessment of its obscuration[J]. Infrared Physics & Technology, 2012, 55(1):150-155.
[11] ZHANG Z D, YANG C L, ZHANG Y. Research on radiation characteristic of infrared decoy based on DPM[C]//Industrial Electronics & Applications. Piscataway:IEEE Press, 2015:7334290.
[12] 杨春玲, 张振东, 刘国成. 药剂半径对红外诱饵弹辐射特性影响[J]. 红外与激光工程, 2016, 45(S1):23-28. YANG C L, ZHANG Z D, LIU G C. Influence of particle radius of composition on radiation characteristics of infrared decoy[J]. Infrared and Laser Engineering, 2016, 45(S1):23-28(in Chinese).
[13] ZHANG Z D, YANG C L, ZHANG Y, et al. Dynamic modeling method for infrared smoke based on enhanced discrete phase model[J]. Infrared Physics & Technology, 2018, 89:315-324.
[14] KOCH E C. Pyrotechnic countermeasures:Ⅱ. Advanced aerial infrared countermeasures[J]. Propellants Explosives Pyrotechnics, 2010, 31(1):3-19.
[15] KOCH E C. Review on pyrotechnic aerial infrared decoys[J]. Propellants Explosives Pyrotechnics, 2001, 26(1):3-11.
[16] KOCH E C. 2006-2008 annual review on aerial infra-red decoy flares[J]. Propellants Explosives Pyrotechnics, 2009, 34(1):6-12.
[17] KOCH E C. Metal-fluorocarbon based energetic materials[M]. Weinheim:Wiley-VCH Verlag GmbH & Co. KGaA, 2012.
[18] KOCH E C. Metal-fluorocarbon-pyrolants IV:Thermochemical and combustion behaviour of magnesium/Teflon/Viton (MTV)[J]. Propellants Explosives Pyrotechnics, 2002, 27(6):340-351.
[19] BLANQUART G, PEPIOT-DESJARDINS P, PITSCH H. Chemical mechanism for high temperature combustion of engine relevant fuels with emphasis on soot precursors[J]. Combustion and Flame, 2009, 156(3):588-607.
[20] CAI L, PITSCH H. Optimized chemical mechanism for combustion of gasoline surrogate fuels[J]. Combustion and Flame, 2015, 162(5):1623-1637.
[21] WAITE B M, HILLBRAND M, FOSTER H G. Reduction of aggressive behavior after removal of Music Television[J]. Psychiatric Services, 1992, 43(2):173-175.
[22] KOCH E C. Metal/fluorocarbon Pyrolants:VI. Combustion behaviour and radiation properties of magnesium/poly(carbon monofluoride) pyrolant[J]. Propellants Explosives Pyrotechnics, 2005, 30(3):209-215.
[23] KOCH E C, HAHMA A, KLAPÖTKE T, et al. Metal-fluoro-carbon pyrolants:XI. Radiometric performance of pyrolants based on magnesium, perfluorinated tetrazolates, and Viton A[J]. Propellants, Explosives, Pyrotechnics, 2010, 35(3):248-253.
[24] KOCH E C, KLAPOETKE T M, RADIES H, et al. Metal-fluorocarbon pyrolants. XⅡ:Calcium salts of 5-perfluoroalkylated tetrazoles-Synthesis characterization and performance evaluation as oxidizers in ternary mixtures with magnesium and VitonTM[J]. Ztschrift fur Naturforschung B, 2011, 66(4):378-386.
[25] KOCH E C, HAHMA A, WEISER V, et al. Metal-fluorocarbon pyrolants. XⅢ:High performance infrared decoy flare compositions based on MgB2 and Mg2Si and polytetrafluoroethylene/Viton®[J]. Propellants, Explosives, Pyrotechnics, 2012, 37(4):432-438.
[26] 张文华, 王星, 张凤鸣, 等. 非均匀热气体红外辐射特性计算新方法[J]. 红外与激光工程, 2008, 37(4):573-578. ZHANG W H, WANG X, ZHANG F M, et al. New calculation method for infrared radiation characteristics of non-uniform hot gas[J]. Infrared and Laser Engineering, 2008, 37(4):573-578(in Chinese).
[27] 林长津. Mg/PTFE基烟火药激光点火及燃烧辐射特性研究[D]. 南京:南京理工大学, 2018. LIN C J. Study on laser ignition and combustion radiation characteristic of Mg/PTFE based pyrolant[D]. Nanjing:Nanjing University of Science and Technology, 2018(in Chinese).
[28] LABONTÉ G, DECK W C. Infrared target-flare discrimination using a ZISC hardware neural network[J]. Journal of Real-Time Image Processing, 2010, 5(1):11-32.
Outlines

/