Electronics and Electrical Engineering and Control

Optimizing arrival traffic flow in airport terminal airspace under trajectory based operations

  • ZHANG Honghai ,
  • TANG Yiwen ,
  • XU Yan
Expand
  • 1. College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. Centre for Aeronautics, Cranfield University, Bedford MK430 AL, United Kingdom

Received date: 2020-01-16

  Revised date: 2020-02-06

  Online published: 2020-04-20

Supported by

National Natural Science Foundation of China (71971114, 61573181)

Abstract

Continuously increasing traffic demand and gradually saturated airspace are promoting a transformation which will shift future air traffic management system to a refined management mode with Trajectory Based Operation (TBO) as its core. Conforming to the TBO concept and current air route structure in busy terminal airspace, traffic flow optimization models corresponding to short-cut directly fly arrival mode and merge-point arrival mode with TBO characterized are proposed respectively. Charles de Gaulle Airport is taken as an example to build the terminal airspace simulation environment. Based on actual flight plans and radar data, four-dimensional flight trajectories are generated and optimized by the two models. According to the simulation outcomes, analysis and comparisons of traffic flow characteristics for the two models are carried out. The results show that the models can effectively avoid potential aircraft conflicts and maintain a safe and efficient traffic flow operation in terminal airspace by implementing trajectory selection, time slot rescheduling, dynamic separation, sequence exchange, etc. It reveals traffic flow characteristics under the TBO mode and provides theoretical support for the future air traffic management strategy centered on the four-dimensional trajectory.

Cite this article

ZHANG Honghai , TANG Yiwen , XU Yan . Optimizing arrival traffic flow in airport terminal airspace under trajectory based operations[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(7) : 323844 -323844 . DOI: 10.7527/S1000-6893.2020.23844

References

[1] JUNG Y, HOANG T, MONTOYA J, et al. A concept and implementation of optimized operations of airport surface traffic[C]//10th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference. Reston:AIAA, 2010:9213.
[2] DE NEUFVILLE R, ODONI A. Airport systems:Planning, design, and management[M]. New York:McGraw-Hill Professional, 2003:144-146.
[3] GROPPE M, PAGLIARI R, HARRIS D. Applying cognitive work analysis to study airport collaborative decision making design[C]//Proceedings of the ENRI International Workshop on ATM/CNS,2009:77-88.
[4] SESAR. European ATM master plan-The roadmap for sustainable air traffic management[R].Luxembourg:SESAR Consortium, 2012.
[5] FAA. The future of the NAS[R]. Washington, D.C.:Federal Aviation Administration, 2016.
[6] RUIZ S, PIERA M A, DEL POZO I. A medium term conflict detection and resolution system for terminal maneuvering area based on spatial data structures and 4D trajectories[J]. Transportation Research Part C:Emerging Technologies, 2013, 26:396-417.
[7] 张军峰,蒋海行,武晓光,等.基于BADA及航空器意图的四维航迹预测[J].西南交通大学学报,2014,49(3):553-558. ZHANG J F, JIANG H X, WU X G, et al. 4 dimension trajectory forecast based on BADA and aircraft intent[J]. Journal of Southwest Jiaotong University, 2014, 49(3):553-558(in Chinese).
[8] KORN B, HELMKE H, KUENZ A. 4D trajectory management in the extended TMA:Coupling AMAN and 4D FMS for optimized approach trajectories[C]//25th International Council of Aeronautical Sciences, 2006.
[9] JOHNSON S C, BARMORE B. NextGen far-term concept exploration for integrated gate-to-gate trajectory-based operations[C]//16th AIAA Aviation Technology, Integration, and Operations Conference. Reston:AIAA 2016.
[10] HANSEN M, NIKOLERIS T, LOVELL D, et al. Use of queuing models to estimate delay savings from 4D trajectory precision[C]//Eighth USA/Europe Air Traffic Management Research and Development Seminar,2009.
[11] NIKOLERIS T, HANSEN M. Queueing models for trajectory-based aircraft operations[J]. Transportation Science, 2012, 46(4):501-511.
[12] RAMASAMY S, SABATINI R, GARDI A, et al. Next generation flight management system for real-time trajectory based operations[J]. Applied Mechanics and Materials, 2014, 3446:344-349.
[13] XU Y, PRATS X, DELAHAYE D. Synchronization of traffic flow and sector opening for collaborative demand and capacity balancing[C]//2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC). Piscataway:IEEE Press, 2018:1-10.
[14] 张洪海,杨磊,别翌荟, 等.终端区进场交通流广义跟驰行为与复杂相变分析[J].航空学报,2015,36(3):949-961. ZHANG H H, YANG L, BIE Y H, et al. Analysis on generalized following behavior and complex phase transition law of approaching traffic flow in terminal airspace[J]. Acta Aeronautia et Astronautica Sinica,2015,36(3):949-961(in Chinese).
[15] ZHANG H, YANG X, FAN W, et al. Guidance control strategy for air traffic flow in terminal areas[J]. Advances in Mechanical Engineering, 2016, 8(10):15-64.
[16] ZELINSKI S J, JUNG J. Arrival scheduling with shortcut path options and mixed aircraft performance[C]//Proceedings of the Eleventh USA/Europe Air Traffic Management Research and Development Seminar,2015.
[17] LIANG M, DELAHAYE D, MARÉCHAL P. Integrated sequencing and merging aircraft to parallel runways with automated conflict resolution and advanced avionics capabilities[J]. Transportation Research Part C:Emerging Technologies, 2017, 85:268-291.
[18] LIANG M, DELAHAYE D, MARéCHAL P. A framework of point merge-based autonomous system for optimizing aircraft scheduling in busy TMA[C]//5th SESAR Innovation Days, 2015.
[19] BALAKRISHNAN H, JUNG Y. A framework for coordinated surface operations planning at Dallas-Fort Worth International Airport[C]//AIAA Guidance, Navigation and Control Conference and Exhibit. Reston:AIAA, 2007.
[20] PRETE J, KROZEL J, MITCHELL J, et al. Flexible, performance-based route planning for super-dense operations[C]//AIAA Guidance, Navigation and Control Conference and Exhibit,2008.
[21] Eurocontrol Experimental Centre. Point merge integration of arrival flows enabling extensive RNAV application and continuous descent[R]. Paris:Eurocontrol, 2010.
Outlines

/