[1] 陈迎春, 张美红, 张淼, 等. 大型客机气动设计综述[J]. 航空学报, 2019, 40(1):522759. CHEN Y C, ZHANG M H, ZHANG M, et al. Review of large civil aircraft aerodynamic design[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522759(in Chinese).
[2] KAUL U K, NGUYEN N T. A 3-D drag optimization study of variable camber continuous trailing edge flap (VCCTEF) using OVERFLOW:AIAA-2015-2422[R]. Reston:AIAA, 2015.
[3] URNES J, NGUYEN N, IPPOLITO C, et al. A mission adaptive variable camber flap control system to optimize high lift and cruise lift to drag ratios of future N+3 transport aircraft:AIAA-2013-0214[R]. Reston:AIAA, 2013.
[4] IPPOLITO C, NGUYEN N, TOTAH J. Initial assessment of a variable-camber continuous trailing-edge flap system on a rigid wing for drag reduction in subsonic cruise:AIAA-2013-5143[R]. Reston:AIAA, 2013.
[5] KAUL U K, NGUYEN N T. Drag optimization study of variable vamber continuous trailing edge flap (VCCTEF) using OVERFLOW:AIAA-2014-2444[R]. Reston:AIAA, 2014.
[6] GUY N. Boeing unveils plans for trailing edge variable camber on 787 to reduce drag, save weight[EB/OL].[2019-09-10]. 2006, http://Tlightglobal.com/news/ar-ticles/.
[7] SOFLA A Y N, MEGUID S A, TAN K T, et al. Shape morphing of aircraft wing:Status and challenges[J]. Materials & Design, 2010,31(3):1284-1292.
[8] 杨智春, 解江. 柔性后缘自适应机翼的概念设计[J].航空学报, 2009, 30(6):1028-1034. YANG Z C, XIE J, Concept design of adaptive wing with flexible trailing edge[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(6):1028-1034(in Chinese).
[9] 尹维龙, 石庆华, 田东奎. 变体后缘的索网传动机构设计与分析[J]. 航空学报, 2013, 34(8):1824-1831. YIN W L, SHI Q H,TIAN D K. Design and analysis of transmission mechanism with cable networks for morphing trailing-edge[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8):1824-1831(in Chinese).
[10] KOTA S, HETRICK J, OSBORN R, et al. Design and application of compliant mechanisms for morphing aircraft structures[J]. Proceedings of SPIE, 2003, 5054:24-33.
[11] KOTA S, OSBORN R, ERVIN G, et al. Mission adaptive compliant wing-design, fabrication and flight tesT[C]//Proceedings of the Rto Applied Vehicle Technology Panel(AVT) Symposium. Brussels:The NATO Science and Technology Organization (STO), 2009.
[12] MOLINARI G, QUACK M, DMITRIEV V, et al. Aero-structural optimization of morphing airfoils for adaptive wings[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(10):1075-1089.
[13] MOLINARI G, QUACK M, ARRIETA A, et al. Design, realization and structural testing of a compliant adaptable wing[J]. Smart Materials and Structures, 2015, 24(10):105027.
[14] LEE D, GONZALEZ L F, PERIAUX J, et al. Robust aerodynamic design optimisation of morphing aerofoil/wing using distributed MOGA[C]//Proceedings of the 28th Congress of the International Council of the Aeronautical Sciences. Bonn:The International Council of the Aeronautical Sciences, 2012.
[15] LYU Z. High-fidelity aerodynamic design optimization of aircraft configurations[D]. Ann Arbor:University of Michigan, 2014:104-122.
[16] LYU Z, MARTINS J R R A. Aerodynamic shape optimization of an adaptive morphing trailing edge wing[J]. Journal of Aircraft, 2015, 52(6):1951-1970.
[17] BURDETTE D A, KENWAY G K, MARTINS J. Aerostructural design optimization of a continuous morphing trailing edge aircraft for improved mission performance[C]//17th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston:AIAA, 2016.
[18] BURDETTE D A. High-fidelity aerostructural design optimization of transport aircraft with continuous morphing trailing edge technology[D]. Ann Arbor:University of Michigan, 2017:119-123.
[19] 梁煜, 单肖文. 大型民机翼型变弯度气动特性分析与优化设计[J]. 航空学报, 2016, 37(3):790-798. LIANG Y, SHAN X W. Aerodynamic analysis and optimization design for variable camber airfoil of civil transport jet[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3):790-798(in Chinese).
[20] 陈钱, 白鹏, 尹维龙, 等. 可连续光滑偏转后缘的变弯度翼型气动特性分析[J]. 空气动力学学报, 2010, 28(1):46-53. CHEN Q, BAI P, YIN W L, et al. Analysis on the aerodynamic characteristics of variable camber airfoil with continuous smooth morphing trailing edge[J]. Acta Aerodynamica Sinica, 2010, 28(1):46-53(in Chinese).
[21] 郭同彪, 白俊强, 杨体浩. 后缘连续变弯度对跨声速翼型气动特性的影响[J]. 航空学报, 2016, 37(2):513-521. GUO T B, BAI J Q, YANG T H. Influence of continuous trailing-edge variable camber on aerodynamic characteristics of transonic airfoils[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2):513-521(in Chinese).
[22] 郭同彪, 白俊强, 李立, 等. 民用客机变弯度机翼优化设计[J]. 中国科学:技术科学, 2018, 48(1):55-66. GUO T B, BAI J Q, LI L, et al. The morphing trailing-edge wing optimization design of the civil aircraft[J]. Scientia Sinica Technologica, 2018, 48(1):55-66(in Chinese).
[23] 周洪升. 翼下吊挂式短舱造型方法及其性能分析[D],南京:南京航空航天大学, 2009:35-42. ZHOU H S. Parameter model design and numerical simulation of under-the-wing nacellle for civil aircraft[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2009:35-42(in Chinese).
[24] 党铁红. 翼吊布局民用飞机发动机安装设计[J]. 民用飞机设计与研究, 2008(2):8-14. DANG T H. Wing crane layout civil aircraft engine installation design[J]. Civil Aircraft Design and Research, 2008(2):8-14(in Chinese).
[25] 张冬云, 张美红, 王美黎, 等. 翼吊布局民机短舱位置气动影响[J]. 空气动力学学报, 2017, 35(6):781-786. ZHANG D Y, ZHANG M H, WANG M L, et al. Aerodynamic influence of nacelle position of a wing-mounted civil aircraft[J]. Acta Aerodynamica Sinica, 2017, 35(6):781-786(in Chinese).
[26] BRODERSEN O, CRIPPA S. RANS-based aerodynamic drag and pitching moment predictions for the common research model[M]//New Results in Numerical and Experimental Fluid Mechanics IX. Springer International Publishing, 2014:485-493.
[27] LIEM R P, KENWAY G K W, MARTINS J R R A. Multimission aircraft fuel-burn minimization via multipoint aerostructural optimization[J]. AIAA Journal, 2015, 53(1):104-122.
[28] 高传强, 张伟伟. 机翼跨声速抖振数值模拟及模态分析[J]. 航空学报, 2019, 40(7):122597. GAO C Q, ZHANG W W. Numerical simulation and modal analysis of transonic buffet flow over wings[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7):122597(in Chinese).
[29] VANDERVOOREN J, SLOOFF J W. CFD-based drag prediction:State-of-the-art, theory, prospects:T-1990-247[R]. Reston:AIAA, 1990.
[30] 何小龙. 基于流场区域分解的远场阻力分解方法[C]//第一届中国空气动力学大会, 2018. HE X L. Far field drag decomposition method based on flow field decomposition[C]//1st Chinese Conference of Aerodynamics, 2018(in Chinese).