Fluid Mechanics and Flight Mechanics

Drag reduction benefits of variable camber technology of airliner based on trailing-edge flap deflection

  • HE Meng ,
  • YANG Tihao ,
  • BAI Junqiang ,
  • YANG Yixiong
Expand
  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2019-09-10

  Revised date: 2020-02-19

  Online published: 2020-04-10

Abstract

To satisfy the practical constraints of engineering projects, this study examines the drag reduction caused by morphing trailing-edge wings based on the position of the inner and outer flaps of the wide-body aircraft and the deflection position. Aerodynamic evaluations based on the Reynolds-Averaged Navier-Stokes (RANS) equation are conducted on all the deflection angles of the flaps, obtaining the optimal deflection angle of the trailing edge flaps. Benefits of the variable camber technology are investigated, including the expansion of the design requirements for the buffet and drag-divergence boundary as well as the drag reduction at other non-design points. Furthermore, the far field drag decomposition method is used to explore the drag reduction mechanism of the design results. Results show that at the non-design points of the variable Mach number, the drag reduction can be obtained regardless of the trimming moment. However, the drag is not decreased while considering the trimming moment. With different cruise lift coefficients, the variable camber technology can invariably achieve certain drag reduction when considering the trimming moment. Moreover, the variable camber technology can also slow the trend of shock-induced separation and improve the buffeting characteristics of the wing. The drag reduction evaluation and mechanism analysis of the variable camber technology based on trailing edge flap deflection provide reference for the variable camber design of wide-body airliner wings.

Cite this article

HE Meng , YANG Tihao , BAI Junqiang , YANG Yixiong . Drag reduction benefits of variable camber technology of airliner based on trailing-edge flap deflection[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(7) : 123462 -123462 . DOI: 10.7527/S1000-6893.2020.23462

References

[1] 陈迎春, 张美红, 张淼, 等. 大型客机气动设计综述[J]. 航空学报, 2019, 40(1):522759. CHEN Y C, ZHANG M H, ZHANG M, et al. Review of large civil aircraft aerodynamic design[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522759(in Chinese).
[2] KAUL U K, NGUYEN N T. A 3-D drag optimization study of variable camber continuous trailing edge flap (VCCTEF) using OVERFLOW:AIAA-2015-2422[R]. Reston:AIAA, 2015.
[3] URNES J, NGUYEN N, IPPOLITO C, et al. A mission adaptive variable camber flap control system to optimize high lift and cruise lift to drag ratios of future N+3 transport aircraft:AIAA-2013-0214[R]. Reston:AIAA, 2013.
[4] IPPOLITO C, NGUYEN N, TOTAH J. Initial assessment of a variable-camber continuous trailing-edge flap system on a rigid wing for drag reduction in subsonic cruise:AIAA-2013-5143[R]. Reston:AIAA, 2013.
[5] KAUL U K, NGUYEN N T. Drag optimization study of variable vamber continuous trailing edge flap (VCCTEF) using OVERFLOW:AIAA-2014-2444[R]. Reston:AIAA, 2014.
[6] GUY N. Boeing unveils plans for trailing edge variable camber on 787 to reduce drag, save weight[EB/OL].[2019-09-10]. 2006, http://Tlightglobal.com/news/ar-ticles/.
[7] SOFLA A Y N, MEGUID S A, TAN K T, et al. Shape morphing of aircraft wing:Status and challenges[J]. Materials & Design, 2010,31(3):1284-1292.
[8] 杨智春, 解江. 柔性后缘自适应机翼的概念设计[J].航空学报, 2009, 30(6):1028-1034. YANG Z C, XIE J, Concept design of adaptive wing with flexible trailing edge[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(6):1028-1034(in Chinese).
[9] 尹维龙, 石庆华, 田东奎. 变体后缘的索网传动机构设计与分析[J]. 航空学报, 2013, 34(8):1824-1831. YIN W L, SHI Q H,TIAN D K. Design and analysis of transmission mechanism with cable networks for morphing trailing-edge[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8):1824-1831(in Chinese).
[10] KOTA S, HETRICK J, OSBORN R, et al. Design and application of compliant mechanisms for morphing aircraft structures[J]. Proceedings of SPIE, 2003, 5054:24-33.
[11] KOTA S, OSBORN R, ERVIN G, et al. Mission adaptive compliant wing-design, fabrication and flight tesT[C]//Proceedings of the Rto Applied Vehicle Technology Panel(AVT) Symposium. Brussels:The NATO Science and Technology Organization (STO), 2009.
[12] MOLINARI G, QUACK M, DMITRIEV V, et al. Aero-structural optimization of morphing airfoils for adaptive wings[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(10):1075-1089.
[13] MOLINARI G, QUACK M, ARRIETA A, et al. Design, realization and structural testing of a compliant adaptable wing[J]. Smart Materials and Structures, 2015, 24(10):105027.
[14] LEE D, GONZALEZ L F, PERIAUX J, et al. Robust aerodynamic design optimisation of morphing aerofoil/wing using distributed MOGA[C]//Proceedings of the 28th Congress of the International Council of the Aeronautical Sciences. Bonn:The International Council of the Aeronautical Sciences, 2012.
[15] LYU Z. High-fidelity aerodynamic design optimization of aircraft configurations[D]. Ann Arbor:University of Michigan, 2014:104-122.
[16] LYU Z, MARTINS J R R A. Aerodynamic shape optimization of an adaptive morphing trailing edge wing[J]. Journal of Aircraft, 2015, 52(6):1951-1970.
[17] BURDETTE D A, KENWAY G K, MARTINS J. Aerostructural design optimization of a continuous morphing trailing edge aircraft for improved mission performance[C]//17th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston:AIAA, 2016.
[18] BURDETTE D A. High-fidelity aerostructural design optimization of transport aircraft with continuous morphing trailing edge technology[D]. Ann Arbor:University of Michigan, 2017:119-123.
[19] 梁煜, 单肖文. 大型民机翼型变弯度气动特性分析与优化设计[J]. 航空学报, 2016, 37(3):790-798. LIANG Y, SHAN X W. Aerodynamic analysis and optimization design for variable camber airfoil of civil transport jet[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3):790-798(in Chinese).
[20] 陈钱, 白鹏, 尹维龙, 等. 可连续光滑偏转后缘的变弯度翼型气动特性分析[J]. 空气动力学学报, 2010, 28(1):46-53. CHEN Q, BAI P, YIN W L, et al. Analysis on the aerodynamic characteristics of variable camber airfoil with continuous smooth morphing trailing edge[J]. Acta Aerodynamica Sinica, 2010, 28(1):46-53(in Chinese).
[21] 郭同彪, 白俊强, 杨体浩. 后缘连续变弯度对跨声速翼型气动特性的影响[J]. 航空学报, 2016, 37(2):513-521. GUO T B, BAI J Q, YANG T H. Influence of continuous trailing-edge variable camber on aerodynamic characteristics of transonic airfoils[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2):513-521(in Chinese).
[22] 郭同彪, 白俊强, 李立, 等. 民用客机变弯度机翼优化设计[J]. 中国科学:技术科学, 2018, 48(1):55-66. GUO T B, BAI J Q, LI L, et al. The morphing trailing-edge wing optimization design of the civil aircraft[J]. Scientia Sinica Technologica, 2018, 48(1):55-66(in Chinese).
[23] 周洪升. 翼下吊挂式短舱造型方法及其性能分析[D],南京:南京航空航天大学, 2009:35-42. ZHOU H S. Parameter model design and numerical simulation of under-the-wing nacellle for civil aircraft[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2009:35-42(in Chinese).
[24] 党铁红. 翼吊布局民用飞机发动机安装设计[J]. 民用飞机设计与研究, 2008(2):8-14. DANG T H. Wing crane layout civil aircraft engine installation design[J]. Civil Aircraft Design and Research, 2008(2):8-14(in Chinese).
[25] 张冬云, 张美红, 王美黎, 等. 翼吊布局民机短舱位置气动影响[J]. 空气动力学学报, 2017, 35(6):781-786. ZHANG D Y, ZHANG M H, WANG M L, et al. Aerodynamic influence of nacelle position of a wing-mounted civil aircraft[J]. Acta Aerodynamica Sinica, 2017, 35(6):781-786(in Chinese).
[26] BRODERSEN O, CRIPPA S. RANS-based aerodynamic drag and pitching moment predictions for the common research model[M]//New Results in Numerical and Experimental Fluid Mechanics IX. Springer International Publishing, 2014:485-493.
[27] LIEM R P, KENWAY G K W, MARTINS J R R A. Multimission aircraft fuel-burn minimization via multipoint aerostructural optimization[J]. AIAA Journal, 2015, 53(1):104-122.
[28] 高传强, 张伟伟. 机翼跨声速抖振数值模拟及模态分析[J]. 航空学报, 2019, 40(7):122597. GAO C Q, ZHANG W W. Numerical simulation and modal analysis of transonic buffet flow over wings[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7):122597(in Chinese).
[29] VANDERVOOREN J, SLOOFF J W. CFD-based drag prediction:State-of-the-art, theory, prospects:T-1990-247[R]. Reston:AIAA, 1990.
[30] 何小龙. 基于流场区域分解的远场阻力分解方法[C]//第一届中国空气动力学大会, 2018. HE X L. Far field drag decomposition method based on flow field decomposition[C]//1st Chinese Conference of Aerodynamics, 2018(in Chinese).
Outlines

/