Additive manufacturing technology is capable of molding complex lattice structures at one time, overcoming the debond problem at the connection point of the core layer and the surface layer of the traditional technology under low-velocity impact. Low-velocity impact tests were performed on additively manufactured Face-Centered Cube (FCC) sandwich panels and Body-Centered Cube (BCC) sandwich panels respectively, using a drop-weight test device, from which the failure mode and impact curves of the sandwich panels were obtained. The smaller indentation depth on BCC sandwich panels than that on FCC sandwich panels under the same energy impact indicates better impact resistance of BCC than FCC sandwich panels. Under low-velocity impact, a pit and a crack appeared at the impact site on the upper layer of the lattice sandwich. However, no large deformation occurred in the rest of the area. A finite element model was developed to simulate the impact response of lattice sandwich panels. For both panels, the impact energy is mainly absorbed by the upper layer and the sandwich layer, with the energy absorption ratio of each part changing little when the impact energy changes. Thus the overall structure of both BCC and FCC sandwich panels is stable and integral. The damage of the FCC sandwich panel initiates from the connection between the upper layer and the vertical truss, while that of the BCC sandwich panel initiates from the vertical truss.
GUO Yidong
,
MA Yu'e
,
LI Peiyao
. Low velocity impact response of additively manufactured titanium alloy micro-truss sandwich panels[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021
, 42(2)
: 423820
-423820
.
DOI: 10.7527/S1000-6893.2020.23820
[1] MCKOWN S, SHEN Y, BROOKES W K. The quasi-static and blast loading response of lattice structures[J]. International Journal of Impact Engineering, 2008, 35(8):795-810.
[2] XUE Z, HUTCHINSON J W. Preliminary assessment of sandwich plates subject to blast loads[J]. International Journal of Mechanical Sciences, 2003, 45(4):687-705.
[3] 易建坤,马翰宇,朱建生. 点阵金属夹芯结构抗爆炸冲击问题研究的综述[J]. 兵器材料科学与工程, 2014, 37(2):116-120. YI J K, MA H Y, ZHU J S. Review of explosion and shock wave resistance of metallic lattice sandwich structure[J]. Ordnance Material Science and Engineering, 2014, 37(2):116-120(in Chinese).
[4] 陈继伟. 轻质点阵夹芯板在民用飞机上的应用分析[J]. 科技视界, 2018, 245(23):69-70. CHEN J W. Application of lattice core sandwich plates on civil aircraft[J]. Science & Technology Vision, 2018, 245(23):69-70(in Chinese).
[5] 高航, 彭灿, 王宣平. 航空增材制造复杂结构件表面光整加工技术研究及进展[J]. 航空制造技术, 2019, 62(9):14-22. GAO H, PENG C, WANG X P. Research progress on surface finishing technology of aeronautical complex structural parts manufactured by additive manufacturing[J] Aeronautical Manufacturing Technology, 2019, 62(9):14-22(in Chinese).
[6] CALIGNANO F, MANFREDI D, AMBROSIO E P. Overview on additive manufacturing technologies[J]. Proceedings of the IEEE, 2017, 105(4):593-612.
[7] NAGESHA B K, DHINAKARAN V, SHREE M V. Review on characterization and impacts of the lattice structure in additive manufacturing[J]. Materials Today:Proceedings, 2020, 21(1):916-919.
[8] PLOCHER J, PANESAR A. Review on design and structural optimisation in additive manufacturing:Towards next-generation lightweight structures[J]. Materials & Design, 2019,183:1-20.
[9] HASAN R. Progressive collapse of titanium alloy micro-lattice structures manufactured using selective laser melting[D]. Liverpool:University of Liverpool, 2013:165-184.
[10] BRENNE F, NIENDORF T, MAIER H J. Additively manufactured cellular structures:Impact of micro-structure and local strains on the monotonic and cyclic behavior under uniaxial and bending load[J]. Journal of Materials Processing Technology, 2013, 213:1558-1564
[11] MINES R A W, TSOPANOS S, SHEN Y. Drop weight impact behaviour of sandwich panels with metallic micro lattice cores[J]. International Journal of Impact Engineering, 2013, 60:120-132.
[12] SHEN Y, CANTWELL W J, MINES R A W. The properties of lattice structures manufactured using selective laser melting[J]. Advanced Materials Research, 2012, 445:386-391.
[13] HASAN R, MINES R A W, SHEN E. Comparison on compressive behaviour of aluminum honeycomb and titanium alloy micro lattice blocks[J]. Key Engineering Materials, 2011, 462-463:213-218.
[14] HUNDLEY J M, CLOUGH E C, JACOBSEN A J. The low velocity impact response of sandwich panels with lattice core reinforcement[J]. International Journal of Impact Engineering, 2015, 84:64-77.
[15] 吴彦霖. 基于SLM制备的钛合金三维点阵结构的力学性能研究[D]. 重庆:重庆大学, 2016:23-36. WU Y L. An investigation into the mechanical properties of Ti6Al4V lattice structures manufactured using selective laser melting[D]. Chongqing:Chongqing University, 2016:23-36(in Chinese).
[16] 郑权, 冀宾, 李昊, 等. 基于增材制造的多层金字塔点阵夹芯板抗压缩性能[J]. 航空材料学报, 2018, 38(3):81-86. ZHENG Q, JI B, LI H, et al. Compressive behavior of sandwich panels with multilayer pyramidal truss cores by additive manufacturing[J]. Journal of Aeronautical materials. 2018, 38(3):81-86(in Chinese).
[17] 张弥, 王晓东, 苏亚东. 钛合金点阵夹芯结构弯曲性能[J]. 中国有色金属学报, 2018, 28(3):457-464. ZHANG M, WANG X D, SU Y D. Bending behavior of titanium truss core sandwich structure[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(3):457-464(in Chinese).
[18] 冯丽佳. 铝合金金字塔点阵夹芯结构的制备与力学性能研究[D]. 哈尔滨:哈尔滨工业大学, 2012:31-45 FENG L J. Fabrication and mechanical analysis of aluminum pyramidal truss sandwich panels[D]. Harbin:Harbin Institute of Technology, 2012:31-45(in Chinese).
[19] 《中国航空材料手册》编委会.中国航空材料手册.第四卷,钛合金、铜合金[M]. 北京:中国标准出版社, 2001:104-131. Editorial Board of China Aviation Materials Manual. China aviation materials manual. Volume IV, titanium and copper alloys[M]. Beijing:Standards Press of China, 2001:104-131(in Chinese).
[20] 惠旭龙, 牟让科, 白春玉. TC4钛合金动态力学性能及本构模型研究[J]. 振动与冲击, 2016, 35(22):161-168. HUI X L, MU R K, BAI C Y. Dynamic mechanical property and constitutive model for TC4 titanium alloy[J]. Journal of Vibration and Shock 2016, 35(22):161-168(in Chinese).
[21] 李云飞, 曾祥国, 廖异, 等. 基于修正Johnson-Cook模型的钛合金热黏塑性动态本构关系及有限元模拟[J]. 中国有色金属学报, 2017, 27(7):1419-1425. LI Y F, ZENG X G, LIAO Y, et al. Thermal-visco plastic constitutive relation of Ti-6Al-4V alloy and numerical simulation by modified Johnson-Cook modal[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(7):1419-1425(in Chinese).
[22] 陈敏. TC4钛合金力学性能测试及动态材料模型研究[D]. 南京:南京航空航天大学, 2012:20-32. CEHN M. Research on mechanical properties test and dynamic material model of Ti6Al4V titanium alloy[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012:20-32(in Chinese).
[23] LESUER D R. Experimental investigations of material models for Ti-6Al-4V titanium and 2024-T3:DOT/FAA/AR-00/25[R]. Washington.D.C.:DOT, 2000.