Special Topic of Starlight Navigation Technology

Deep fusion navigation technology of missile-borne Stellar-INS with LFOV

  • SONG Ningfang ,
  • YANG Yanqiang
Expand
  • School of Instrumentation and Optoelectronics Engineering, Beihang University, Beijing 100083, China

Received date: 2019-11-25

  Revised date: 2020-01-20

  Online published: 2020-03-26

Supported by

National Program on Key Basic Research Project(61XXX3)

Abstract

To lower the requirement for attitude adjustment and star observation in the middle stage of missile-borne Stellar-Inertial Navigation System (Stellar-INS) combination flight, and to improve the accuracy of the Stellar-INS attitude, this paper proposes a deep fusion navigation method for the Stellar-INS with Large Field of View (LFOV) star sensors. The Narrow Field of View (NFOV) star sensor outputs the star vector, while the LFOV star sensor can output both the attitude and the star vector information. The observation equations based on the output attitude and the star vector information from the star sensors are derived, respectively, and the correlation of the Stellar/INS combined method with the LFOV/NFOV is analyzed. Considering the Stellar-INS installation error, gyro error and initial platform error angle, this study establishes a total error term model of the Stellar-INS, and proposes a deep fusion navigation method using the linear Kalman filter. Finally, different performance of the LFOV/NFOV is analyzed via mathematical simulation under the constraint of different attitude observation paths. The results show that the deep fusion navigation method for the Stellar-INS with the LFOV star sensor can not only reduce the constraint requirements for attitude adjustment and observation, but also improve the performance of the combined attitude.

Cite this article

SONG Ningfang , YANG Yanqiang . Deep fusion navigation technology of missile-borne Stellar-INS with LFOV[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(8) : 623674 -623674 . DOI: 10.7527/S1000-6893.2020.23674

References

[1] ROUNDS S F, MARMAR G. Stellar-inertial guidance capabilities for advanced ICBM[C]//Proceedings of the Guidance & Control Conference, 2013:849-855.
[2] 戴晨曦, 程向红, 陈红梅, 等. 天文观测角辅助的高超声速飞行器传递对准方法[J]. 中国惯性技术学报, 2015, 23(4):446-50. DAI C X, CHENG X H, CHEN H M, et al. Alignment method of hypersonic vehicle assisted by astronomical observation angle[J]. Journal of Chinese Inertial Technology, 2015, 23(4):446-50(in Chinese).
[3] 王鹏, 张迎春. 基于SINS/星敏感器的组合导航模式[J]. 东南大学学报(自然科学版), 2005, 35(S2):84-89. WANG P, ZHANG Y C. Integrated navigation mode based on the SINS/star sensor[J]. Journal of Southwest University (Natural science edition), 2005, 35(S2):84-9(in Chinese).
[4] 陈伟雄, 王林, 郑涛, 等. 惯性平台中星敏感器安装误差标定方法研究[J]. 导航与控制, 2017, 16(5):71-75. CHEN W X, WANG L, ZHENG T, et al. Research on calibration method of installation error of star sensor in inertial platform[J]. Navigation and Control, 2017, 16(5):71-75(in Chinese).
[5] 张金亮. 捷联惯性/星光组合导航关键技术研究[D]. 西安:西北工业大学, 2016:2-5. ZHANG J L. Research on key technologies of strapdown inertial/star sensor integrated navigation[D]. Xi'an:Northwestern Polytechnical University, 2016:2-5(in Chinese).
[6] 熊智, 陈海明, 郁丰. 耦合位置误差的机载惯性/星光组合算法研究[J]. 宇航学报, 2010, 31(12):2683-2690. XIONG Z, CHEN H M, YU F. Research of airborne INS/STAR integrated algorithm coupled with position error[J]. Journal of Astronoutis, 2010, 31(12):2683-2690(in Chinese).
[7] 刘炳琪, 魏诗卉, 苏国华, 等. 中远程导弹惯性/星光组合导航关键技术及研究现状[J]. 系统工程理论与实践, 2019, 39(5):1351-1362. LIU B Q, WEI S H, SU G H, et al. Key techniques and current research status of INS/CNS integrated navigation on intermediate-range missile[J]. Systems Engineering-Theory & Practice, 2019, 39(5):1351-1362(in Chinese).
[8] BEZOOIJEN R W H V. Star sensors for autonomous attitude control and navigation[C]//SPIE Proceedings,1992.
[9] ALI J, ZHANG C, FANG J. An algorithm for astro-inertial navigation using CCD star sensors[J]. Aerospace Science & Technology, 2006, 10(5):449-454.
[10] SUN T, XING F, YOU Z, et al. Motion-blurred star acquisition method of the star tracker under high dynamic conditions[J]. Optics Express, 2013, 21(17):20096-20110.
[11] LEE A, ELY T, SOSTARIC R, et al. Preliminary design of the guidance, navigation, and control system of the altair Lunar lander[C]//Proceedings of the AIAA Guidance, Navigation, & Control Conference. Reston:AIAA, 2013:3-5.
[12] 陈醒, 胡春晖, 颜昌翔, 等. 大视场空间可见光相机的杂散光分析与抑制[J]. 中国光学, 2019, 12(3):678-685. CHEN X, HU C H, YAN C X, et al. Analysis and suppression of space stray light of visible cameras with wide field of view[J]. Chinese Optics, 2019, 12(3):678-685(in Chinese).
[13] 王文杰, 张广军, 魏新国. 全天时星敏感器的建模分析与实验验证[J]. 红外与激光工程, 2019, 48(11):1113001. WANG W J, ZHANG G J, WEI X G. Modeling analysis and experimental verification for all-time star sensor[J]. Infrared and Laser Engineering, 2019, 48(11):1113001(in Chinese).
[14] AGHAEI M,MOGHADDAM H A. Grid star identification improvement using optimization approaches[J]. IEEE Transition Aerospace Electronic System, 2016, 52(5):2080-2090.
[15] GUO J M, LIU B, HE X, et al. The wavelet domain hidden markov model analysis of ship attitude based on dual star sensors[C]//IEEE International Conference on Natural Computation. Piscatoway:IEEE Press, 2016:1023-1027.
[16] 叶立军,刘付成,尹海宁,等. 基于纵向滤波的星敏感器低频误差在线估计[J]. 航空学报, 2019, 40(10):323163. YE L J, LIU F C, YIN H N, et al. Online estimation of low frequency error for star tracker based on vertical filter[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10):323163(in Chinese).
[17] QIN S, ZHAN D, ZHENG J, et al. Dynamic attitude measurement method of star sensor based on gyro's precise angular correlation,9316716[P]. 2016-4-19.
[18] LIU H. Local observability analysis of star sensor installation errors in a SINS/CNS integration system for near-Earth flight vehicles[J]. Sensors, 2017, 17:167-180.
[19] 程风, 李海霞, 常乐, 等. CNS+GNSS+INS船载高精度实时定位定姿算法改进研究[J]. 测绘通报, 2019(5), 30-34. CHENG F, LI H X, CHANG L, et al. Research on improvement of CNS+GNSS+INS ship-borne high precision real-time positioning and attitude determination algorithms[J]. Bulletin of Surveying and Mapping, 2019(5), 30-34(in Chinese).
[20] 赵依,张洪波,汤国建. 考虑星敏感器安装误差的弹道导弹捷联星光/惯性复合制导[J].航空学报, 2020, 41(8):623503. ZHAO Y, ZHANG H B, TANG G J, Strapdown stellar-inertial composite guidance method for ballistic missile considering star sensor installation error[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8):623503(in Chinese).
[21] ZHANG C, NIU Y, ZHANG H, et al. Optimized star sensors laboratory calibration method using a regularization neural network[J]. Applied Optics, 2018, 57:1067-1074.
[22] ROGERS R M. Applied mathematics in integrated navigation systems[M]. 3rd ed. Reston:AIAA, 2015.
[23] YANG Y Q, ZHANG C X, LU J Z, et al. In-flight calibration of Gyros and star sensor with observability analysis for SINS/CNS Integration[J]. IEEE Sensors Journal, 2017, 21(17):7131-7142.
[24] YANG Y Q, ZHANG C X, LU J Z, et al. Local observability analysis of star sensor installation errors in a SINS/CNS integration system for near-Earth flight vehicles[J]. Sensors, 2017, 17:167-180.
Outlines

/