[1] 安鹏, 姚世强, 王京丽, 等. 针栓式喷注器的特点及设计方法[J]. 导弹与航天运载技术, 2016(3):50-54. AN P, YAO S Q, WANG J L, et al. Characteristics and design of pintle injector[J]. Missiles and Space Vehicles, 2016(3):50-54(in Chinese).
[2] 岳春国, 李进贤, 侯晓, 等. 变推力液体火箭发动机综述[J]. 中国科学E辑:技术科学, 2009, 39(3):464-468. YUE C G, LI J X, HOU X, et al. Summarization on variable liquid thrust rocket engines[J]. Science in China Series E:Technological Sciences, 2009, 39(3):464-468(in Chinese).
[3] 袁宇. 猎鹰火箭发动机设计特点[J]. 太空探索, 2017(7):19-20. YUAN Y. Design features of falcon rocket engine[J]. Space Exploration, 2017(7):19-20(in Chinese).
[4] DRESSLER G A. Summary of deep throttling rocket engines with emphasis on apollo lmde:AIAA-2006-5220[R]. Reston:AIAA,2006.
[5] ELVERUM G, HOFFMAN A, MILLER J, et al. The descent engine for the lunar module[C]//3rd Propulsion Joint Specialist Conference, 1967.
[6] GILROY R, SACKHEIM R. The lunar module descent engine a historical summary:AIAA-1989-2385[R]. Reston:AIAA, 1989.
[7] 王福民, 旷武岳. 美国太空探索技术公司(SpaceX)及其"猎鹰"系列运载火箭[R]. 西安:西安航天动力研究所, 2012:5. WANG F M, KUANG W Y. SpaceX and its falcon series of launch vehicles[R]. Xi'an:Xi'an Aerospace Propulsion Institute, 2012:5(in Chinese).
[8] 张雪松. 猎鹰火箭的基础:不断升级的梅林发动机[J]. 卫星与网络, 2017(6):40-41. ZHANG X S. Foundation of falcon rocket:Upgrading merlin engine[J]. Satellite and Network, 2017(6):40-41(in Chinese).
[9] HEISTER S D. Pintle injectors,handbook of atomization and sprays:Theory and applications[M]. New York:Springer, 2011:647-655.
[10] BOETTCHER P A, DAMAZO J S, SHEPHERD J E, et al. Visualization of transverse annular jets[C]//62nd Annual Meeting of the APS Division of Fluid Dynamic. Minneapolis:American Physical Society, 2009.
[11] SAKAKI K, KAKUDO H, NAKAYA S, et al. Combustion characteristics of ethanol/liquid-oxygen rocket-engine combustor with planar pintle injector[J]. Journal of Propulsion and Power, 2017, 33(2):514-521.
[12] SAKAKI K, KAKUDO H, NAKAYA S, et al. Optical measurements of ethanol/liquid oxygen rocket engine combustor with planar pintle injector:AIAA-2015-3845[R].Reston:AIAA, 2015.
[13] SAKAKI K, KAKUDO H, NAKAYA S, et al. Performance evaluation of rocket engine combustors using ethanol/liquid oxygen pintle injector:AIAA-2016-5080[R]. Reston:AIAA, 2016.
[14] CHENG P, LI Q L, XU S, et al. On the prediction of spray angle of liquid-liquid pintle injectors[J]. Acta Astronautica, 2017, 138:145-151.
[15] 成鹏. 变推力火箭发动机喷雾燃烧动态过程研究[D]. 长沙:国防科技大学, 2018:12. CHENG P. The dynamics of spray combustion in variable thrust rocket engines[D]. Changsha:National University of Defense Technology, 2018:12(in Chinese).
[16] 刘昌波. 针栓式喷注器雾化特性的多尺度仿真研究[D]. 西安:西安航天动力研究所, 2014:9. LIU C B. Multiscale simulations of primary atomization for the pintle injector[D]. Xi'an:Xi'an Aerospace Propulsion Institute, 2014:9(in Chinese).
[17] 郑刚. 液体火箭发动机燃烧室喷注单元雾化特性研究[D]. 北京:装备学院, 2016:4. ZHENG G. Study on atomization characteristics of injector unit in liquid rocket engine combustion chamber[D]. Beijing:The Academy of Equipment, 2016:4(in Chinese).
[18] SON M,YU K,RADHAKRISHNAN K, et al. Verification on spray simulation of a pintle injector for liquid rocket engine[J]. Journal of Thermal Science, 2016, 25(1):90-96.
[19] RADHAKRISHNAN K, SON M, LEE K, et al. Effect of injection conditions on mixing performance of pintle injector for liquid rocket engine[J]. Acta Astronautica, 2018, 150:105-116.
[20] POPINET S. Gerris:A tree-based adaptive solver for the incompressible euler equations in complex geometries[J]. Journal of Computational Physics, 2003, 190:572-600.
[21] POPINET S. An accurate adaptive solver for surface-tension-driven interfacial flows[J]. Journal of Computational Physics, 2009, 228(16):5838-5866.
[22] SALVADOR F J, ROMERO J V, ROSELLÓM D, et al. Numerical simulation of primary atomization in diesel spray at low injection pressure[J]. Journal of Computational and Applied Mathematics, 2016, 291:94-102.
[23] MEHRAVARAN K. Direct simulations of primary atomization in moderate-speed diesel fuel injection[J]. International Journal of Materials, Mechanics and Manufacturing, 2013, 1(2):207-209.
[24] MA D J, CHEN X D, KHAR P, et al. Atomization patterns and breakup characteristics of liquid sheets formed by two impinging jets:AIAA-2011-97[R].Reston:AIAA, 2011.
[25] CHEN X D, MA D J, YANG V, et al. High-fidelity simulations of impinging jet atomization[J]. Atomization and Sprays, 2013, 23(12):1079-1101.
[26] CHEN X D, MA D J, YANG V. Mechanism study of impact wave in impinging jets atomization:AIAA-2012-1089[R].Reston:AIAA, 2012.
[27] 李佳楠, 费俊, 杨伟东,等. 直流互击式喷注单元雾化特性准直接数值模拟[J]. 推进技术, 2016, 37(4):713-725. LI J N, FEI J, YANG W D, et al. Quasi-direct numerical simulation on atomization characteristics of impinging jets injector[J]. Journal of Propulsion Technology, 2016, 37(4):713-725(in Chinese).
[28] 王凯, 李鹏飞, 杨国华,等. 相邻离心式喷嘴液膜撞击雾化过程仿真[J]. 推进技术, 2017, 38(2):408-415. WANG K, LI P F, YANG G H, et al. Simulation on liquid films impact atomization process of adjacent pressure swirl injectors[J]. Journal of Propulsion Technology, 2017, 38(2):408-415(in Chinese).
[29] 张培玉. 基于VOF方法的撞击雾化及旋流雾化稳定性机制研究[D]. 北京:清华大学, 2016:6. ZHANG P Y. Investigation of stability mechanism of impinging jets atomization and swirl spray based on VOF method[D].Beijing:Tsinghua University, 2016:6(in Chinese).
[30] 王凯, 杨国华, 李鹏飞,等. 基于Gerris的离心式喷嘴锥形液膜破碎过程数值模拟[J]. 推进技术, 2018, 39(5):1041-1050. WANG K, YANG G H, LI P F, et al. Numerical simulation on conical liquid sheet breakup process of pressure swirl injector based on Gerris[J]. Journal of Propulsion Technology, 2018, 39(5):1041-1050(in Chinese).
[31] FUSTER D, BAGUÉ A, POPINET S, et al. Simulation of primary atomization with an octree adaptive mesh refinement and VOF method[J]. International Journal of Multiphase Flow, 2009, 35(6):550-565.
[32] 阎超, 于剑, 徐晶磊, 等. CFD模拟方法的发展成就与展望[J]. 力学进展, 2011, 41(5):562-589. YAN C, YU J, XU J L, et al. On the achievements and prospects for the methods of computation fluid dynamics[J]. Advances in Mechanics, 2011, 41(5):562-589(in Chinese).
[33] 杨国华, 张波涛, 周立新, 等. 液气动量比对内混式直流气液喷嘴雾化特性的影响[J]. 火箭推进, 2019, 45(5):66-73. YANG G H, ZHANG B T, ZHOU L X, et al. Effects of momentum ratio on atomization characteristics of internal mixing gas-liquid injector[J]. Journal of Rocket Propulsion, 2019, 45(5):66-73(in Chinese).
[34] 王凯, 杨国华, 李鹏飞, 等. 离心式喷嘴内部流动过程数值仿真分析[J]. 火箭推进, 2016, 42(4):14-20. WANG K, YANG G H, LI P F, et al. Numerical simulation of internal flow process in pressure swirl injector[J]. Journal of Rocket Propulsion, 2016, 42(4):14-20(in Chinese).
[35] KELSO R M, LIM T T, PERRY A E. An experimental study of round jets in cross-flow[J]. Journal of Fluid Mechanics, 1996, 306:111-144.
[36] NEW T H, LIM T T, LUO S C. Effects of jet velocity profiles on a round jet in cross-flow[J]. Experiments in Fluids, 2006, 40:859-875.
[37] ZHANG Y N, WANG X Y, LIU C Q. Comparisons of and analyses of vortex identification between omega method and Q criterion[J]. Journal of Hydrodynamics, 2019, 31(2):224-230.
[38] SHINJOA J, UMEMURA A. Simulation of liquid jet primary breakup:Dynamics of ligament and droplet formation[J]. International Journal of Multiphase Flow, 2010, 36:513-532.
[39] DOMBROWSKI N, HOPPER P. The aerodynamics instability and disintegration of viscous liquid sheets[J]. Chemical Engineering Science, 1963, 18(3):203-214.