[1] TSIOTRAS P, NAILLY A. Comparison between peer-to-peer and single spacecraft refueling strategies for spacecraft in circular orbits[C]//Proceedings of the 2005 Infotech@Aerospace Conference. Reston:AIAA, 2005:26-29.
[2] SHEN H, TSIOTRAS P. Optimal two-impulse rendezvous using multiple-revolution Lambert solutions[J]. Journal of Guidance, Control and Dynamics, 2013, 26(1):50-61.
[3] ZHOU H, YAN Y, HUANG X, et al. Multi-objective planning of a multiple geostationary spacecraft refuelling mission[J]. Engineering Optimization, 2017, 49(3):531-548.
[4] 谭迎龙,乔兵,朱啸宇, 等.一种以燃耗为优化目标的航天器在轨加注作业调度[J]. 载人航天, 2018, 24(2):143-149. TAN Y L, QIAO B, ZHU X Y, et al. Mission scheduling for on-orbit spacecraft refueling with optimized fuel consumption during orbital maneuver[J]. Manned Spaceflight, 2018, 24(2):143-149(in Chinese).
[5] 朱啸宇, 乔兵, 张庆展, 等.一种基于燃料站的可往返式在轨加注任务调度模型及优化算法[J]. 工程科学与技术, 2017, 49(S2):186-194. ZHU X Y, QIAO B, ZHANG Q Z, et al. An reusable on-orbit refueling mode and mission scheduling algorithm for GEO spacecraft through a space fuel station[J]. Advanced Engineering Sciences, 2017, 49(S2):186-194(in Chinese).
[6] 肖海, 刘新学, 舒健生,等. 多在轨服务飞行器目标分配问题研究[J]. 计算机仿真,2017, 34(1):90-93,128. XIAO H, LIU X X, SHU J S, et al. Research on target allocation for multiple on-orbit service vehices[J]. Computer Simulation, 2017, 34(1):90-93, 128(in Chinese).
[7] GAO X Z, HAN H C, YANG K, et al. Energy efficiency optimization for D2D communications based on SCA and GP method[J]. China Communications, 2017, 14(3):66-74.
[8] 裴绪芳, 陈学强, 吕丽刚, 等. 基于随机森林强化学习的干扰智能决策方法研究[J]. 通信技术, 2019, 52(9):2118-2124. PEI X F, CHEN X Q, LV L G, et al. Research on jamming intelligent decision making method based on random forest reinforcement learning[J]. Communications Technology, 2019, 52(9):2118-2124(in Chinese).
[9] 廖晓闽, 严少虎, 石嘉, 等. 基于深度强化学习的蜂窝网资源分配算法[J]. 通信学报, 2019, 40(2):11-18. LIAO X M, YAN S H, SHI J, et al. Deep reinforcement learning based resource allocation algorithm in cellular networks[J]. Journal on Communications, 2019, 40(2):11-18(in Chinese).
[10] 肖鹏飞,张超勇,孟磊磊, 等. 基于深度强化学习的非置换流水车间调度问题[J/OL]. 计算机集成制造系统,(2019-07-11)[2019-10-09]. http://kns.cnki.net/kcms/deail/11.59-46.tp.20190708.1512.034.html. XIAO P F, ZHANG C Y, MENG L L, et al. Non-permutation flow shop scheduling problem based on deep reinforcement learning[J/OL]. Computer Integrated Manufacturing Systems, (2019-07-11)[2019-10-09].http://kns.cnki.net/kcms/deail/11.5946.tp.20190708.1512.034.html (in Chinese).
[11] 李俨, 董玉娜. 基于SA-DPSO混合优化算法的协同空战火力分配[J]. 航空学报, 2010, 31(3):626-631. LI Y, DONG Y N. Weapon-target assignment based on simulated annealing and discrete particle swarm optimization in cooperative air combat[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(3):626-631(in Chinese).
[12] 陈黎, 王中许, 武兆斌, 等. 一种基于先期毁伤准则的防空火力优化分配[J]. 航空学报, 2014, 35(9):2574-2582. CHEN L, WANG Z X, WU Z B, et al. A kind of antiaircraft weapon-target optimal assignment under earlier damage principle[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9):2574-2582(in Chinese).
[13] 赵慧, 张学, 刘明, 等.实现无线传输能量效率最大化的功率控制新方法[J]. 计算机应用, 2013, 33(2):365-368, 381. ZHAO H, ZHANG X, LIU M, et al. New power control scheme with maximum energy efficiency in wireless transmission[J]. Journal of Computer Applications, 2013, 33(2):365-368, 381(in Chinese).
[14] RODOPLU V, MENG T H. Bits-per-Joule capacity of energy-limited wireless networks[J]. IEEE Transactions on Wireless Communications, 2007, 6(3):857-865.
[15] 孟雅哲. 航天器燃耗最优轨道直接/间接混合法延拓求解[J]. 航空学报, 2017, 38(1):320168. MENG Y Z. Minimum-fuel spacecraft transfer trajectories solved by direct/indirect hybird continuation method[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1):320168(in Chinese).
[16] 张洪波. 航天器轨道力学理论与方法[M]. 北京:国防工业出版社, 2015:21-360. ZHANG H B. Theories and methods of spacecraft orbital mechanics[M]. Beijing:National Defense Industry Press, 2015:21-360(in Chinese).
[17] 谭迎龙. 航天器在轨服务作业模式及其调度算法研究[D]. 南京:南京航空航天大学, 2018. TAN Y L. Research on workflow and mission scheduling algorithms for on-orbit servicing of spacecraft[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2018(in Chinese).
[18] HESSEL M, MODAYIL J, VAN HASSELT H, et al. Rainbow:Combining improvements in deep reinforcement learning[J]. Association for the Advancement of Artificial Intelligence, 2017, 10(6):3215-3222.
[19] WANG Z, SCHAUL T, HESSEL M, et al. Dueling network architectures for deep reinforcement learning[J]. Association for the Advancement of Artificial Intelligence, 2016, 4(5):1998-2003.
[20] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540):529-533.
[21] VAN HASSELT H, GUEZ A, SILVER D. Deep reinforcement learning with double Q-learning[C]//Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, 2016:2094-2100.
[22] 张菁, 何友, 彭应宁, 等. 基于神经网络和人工势场的协同博弈路径规划[J]. 航空学报, 2019, 40(3):322493. ZHANG J, HE Y, PENG Y N, et al. Neural network and artificial potential field based cooperative and adversarial path planning[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3):322493(in Chinese).
[23] LIU B Y, YE X B, GAO Y, et al. Forward-looking imaginative planning framework combined with prioritized replay double DQN[C]//International Conference on Control, Automation and Robotics, 2019, 4:336-341.
[24] SHEN H. Optimal scheduling for satellite refuelling in circular orbits[D]. Georgia:Georgia Institute of Technology, 2003.
[25] SALOTTI J. Robust, affordable, semi-direct Mars mission[J]. Acta Astronautica, 2016, 127:235-248.
[26] 朱啸宇. 基于空间燃料站的圆轨道航天器在轨加注服务调度算法[D]. 南京:南京航空航天大学, 2017. ZHU X Y. Optimal scheduling for on-orbit refueling based on space fuel station[J]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2017(in Chinese).
[27] 余婧. 航天器在轨服务任务规划技术研究[D]. 长沙:国防科技大学, 2015. YU J. Research on spacecrafts on-oribt servicing mission planning[D]. Changsha:National University of Defense Technology, 2015(in Chinese).
[28] 赵琳,王硕,郝勇, 等. 基于能量最优的敏捷遥感卫星在轨任务规划[J]. 航空学报, 2017, 38(6):207-225. ZHAO L, WANG S, HAO Y, et al. Energy-optimal in orbit mission planning for agile remote sensing satellites[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6):207-225(in Chinese).