When the relative position measurement accuracy between multiple aircrafts is significantly higher than the absolute positioning accuracy of the aircraft, a relative measurement is added between the aircrafts, and the coordinated processing of the positioning measurement of each aircraft can improve the absolute positioning accuracy. This article aims at the situation that the cluster aircraft cannot measure the distance to the non-cooperative target but can only find the direction. By introducing the mutual ranging between the cluster aircrafts, the positioning accuracy of the cluster aircraft and the non-cooperative target can be improved. For this incomplete relative measurement situation, a cooperative positioning solution method that can improve the positioning accuracy is presented, including the nonlinear static optimization estimation and the linearized least squares estimation method. This coordinated positioning scheme does not need to perform a complete relative position measurement, but can reasonably decompose the ranging and direction finding in the group relative measurement and reduce the requirements for the configuration of aircraft measurement equipment. The validity of the method is verified by the simulation.
[1] 马宗锋,辛明瑞,申景诗,等. 分布式集群空间飞行器综述[J]. 航天器工程, 2013,22(1):101-105. MA Z F, XIN M R, SHEN J S, et al. Survey on fractionated spacecraft cluster[J]. Spacecraft Engineering, 2013,22(1):101-105(in Chinese).
[2] ZOU Y, PAGILLA P R, RATLIFF R T. Distributed formation flight control using constraint forces[J]. Journal of Guidance, Control, & Dynamics, 2009, 32(1):112-120.
[3] ALI J, MIRZA M R U B. Performance comparison among some nonlinear filters for[J]. Nonlinear Dynamics, 2010, 61(3):491-502.
[4] 徐博,白金磊,郝燕玲,等. 多AUV协同导航问题的研究现状与进展[J]. 自动化学报, 2015, 41(3):445-461. XU B, BAI J L, HAO Y L, et al. The research status and progress of cooperative navigation for multiple AUVs[J]. Acta Automatica Sinica, 2015, 41(3):445-461(in Chinese).
[5] FALLON M F, PAPADOPOULOS G, LEONARD J J. A measurement distribution framework for cooperative navigation using multiple AUVs[C]//2010 IEEE International Conference on Robotics and Automation (ICRA), Piscataway:IEEE Press, 2010.
[6] ROUMELIOTIS S I, BEKEY G A. Distributed multirobot localization[J]. IEEE Transactions on Robotics & Automation, 2002, 18(5):781-795.
[7] ROUMELIOTIS S I, REKLEITIS I M. Propagation of uncertainty in cooperative multirobot localization:Analysis and experimental results[J]. Autonomous Robots, 2004,17(1):41-54.
[8] 刘俊成,张京娟,谭丽芬. 新的导弹协同定位技术[J]. 北京航空航天大学学报, 2012, 38(9):1149-1153. LIU J C, ZHANG J J, TAN L F. New technique for multi-missile cooperative localization[J]. Journal of Beijing University of Aeronautics and Astronautics,2012, 38(9):1149-1153(in Chinese).
[9] 杜君南,王融,熊智,等. 基于相对距离差模型的集群飞行器协同导航方法研究[C]//第十届中国卫星导航年会, 2019:88-92. DU J N, WANG R, XIONG Z, et al. Research on collaborative navigation method of cluster aircraft based on relative distance difference model[C]//The 10th China Satellite Navigation Conference, 2019:88-92(in Chinese).
[10] 许晓伟,赖际舟,吕品,等. 多无人机协同导航技术研究现状及进展[J]. 导航定位与授时, 2017, 4(4):1-9. XU X W, LAI J Z, LYU P, et al. A literature review on the research status and progress of cooperation navigation technology for multiple UAVs[J].Navigation Positioning & Timing, 2017, 4(4):1-9(in Chinese).
[11] 闫俊. 基于空战的多机协同定位算法研究[J]. 计算机仿真, 2014, 31(8):27-31. YAN J. A multi-airplane cooperative detection method for air combat[J]. Computer Simulation, 2014, 31(8):27-31(in Chinese).
[12] 刘晓洋,徐胜红. 一种长机故障情况下机群编队协同定位算法[J]. 兵器装备工程学报, 2019, 40(2):136-140. LIU X Y, XU S H. Flight formation collaborative localization algorithm under the condition of leader fault[J]. Journal of Ordnance Equipment Engineering, 2019, 40(2):136-140(in Chinese).
[13] 刘俊成,张京娟,冯培德. 基于相互测距信息的机群组网协同定位技术[J]. 北京航空航天大学学报, 2012, 38(4):541-545. LIU J C, ZHANG J J, FENG P D. Swarming aircraft collaborative localization based on mutual rangings[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(4):541-545(in Chinese).
[14] 刘晓洋,徐胜红. 无人机编队分层式协同导航仿真研究[J]. 计算机仿真, 2019, 36(10):44-48. LIU X Y, XU S H. Simulation research on hierarchical cooperative navigation of UAV formation[J]. Computer Simulation, 2019, 36(10):44-48(in Chinese).
[15] 潘瑞鸿,徐胜红. 基于几何特性的多无人机协同导航算法[J]. 兵器装备工程学报, 2017, 38(10):55-59. PAN R H, XU S H. Multi-UAV cooperative navigation algorithm based on geometric characteristics[J]. Journal of Ordnance Equipment Engineering, 2017, 38(10):55-59(in Chinese).
[16] 于卓静,孙永荣,朱云峰,等. 测角测距信息下的双机协同高精度定位算法[J]. 兵工自动化, 2019, 38(2):1-5. YU Z J, SUN Y R, ZHU Y F, et al. High precision algorithm of dual-aircraft cooperative locating with angle and distance information[J]. Ordnance Industry Automation, 2019, 38(2):1-5(in Chinese).
[17] 张滔. 不完全量测下机动目标的多站无源定位跟踪算法[C]//第三十三届中国控制会议,2014:696-700. ZHANG T. Maneuvering target tracking algorithm based on multi-station bearing-only passive location with incomplete observation[C]//33rd Chinese Control Conference, 2014:696-700(in Chinese).
[18] ABATZOGLOU T J, MENDEL J M, HARADA G A. The constrained total least squares technique and its applications to harmonic super resolution[J]. IEEE Transactions On Signal Processing, 2002, 39(5):1070-1087.
[19] CHIASSON J, WANG K Y, LI M W, et al. Algebraic methods for nonlinear systems:Parameter identification and state estimation[J]. Current Trends in Nonlinear Systems and Control, 2006:1-21.
[20] WILLMOTT C M K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance[J]. Climate Research, 2005, 30(1):79-82.