[1] DENG J, DONG W, SOCHER R, et al. ImageNet:A large-scale hierarchical image database[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2009.
[2] KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems, 2012.
[3] HE K, ZHANG X, REN S. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2016.
[4] LONG J, EVAN S, TREVOR D. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2015.
[5] REN S, HE K, GIRSHICK R, et al. Faster R-CNN:Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015, 39(6):1137-1149.
[6] HOU X, ZHANG L. Saliency detection:A spectral residual approach[C]//IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2007.
[7] WANG Y, GIRSHICK R, HEBERT M, et al. Low-shot learning from imaginary data[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018.
[8] LAMPERT C H, NICKISCH H, HARMELING S. Attribute-based classification for zero-shot visual object categorization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 36(3):453-465.
[9] SEBASTIAN T, PRATT L. Learning to learn[M]. Norwell:Springer Science & Business Media, 2012.
[10] SCHAAL S. Is imitation learning the route to humanoid robots[J]. Trends in Cognitive Sciences, 1999, 3(6):233.
[11] GARCIA V, BRUNA J. Few-shot learning with graph neural networks[EB/OL]. (2018-02-20)[2019-11-20]. https://arxiv.org/abs/1711.04043v1.
[12] DUAN Y, ANDRYCHOWICZ M, STADIE B, et al. One-shot imitation learning[C]//Advances in Neural Information Processing Systems, 2017:1087-1098.
[13] ORESHKIN B, LÓPEZ P R, LACOSTE A. Tadam:Task dependent adaptive metric for Improved mproved few-shot learning[C]//Advances in Neural Information Processing Systems, 2018:721-731.
[14] REN M, TRIANTAFILLOU E, RAVI S, et al. Meta-learning for semi-supervised few-shot classification[EB/OL]. (2018-02-02)[2019-11-20]. https://arXivpreprintarXiv:1803.00676.
[15] ROMERA-PAREDES B, TORR P. An embarrassingly simple approach to zero-shot learning[C]//International Conference on Machine Learning, 2015:2152-2161.
[16] CHANGPINYO S, CHAO W L, GONG B, et al. Synthesized classifiers for zero-shot learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2016:5327-5336.
[17] KODIROV E, XIANG T, FU Z, et al. Unsupervised domain adaptation for zero-shot learning[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2015:2452-2460.
[18] ZHANG Z, SALIGRAMA V. Zero-shot learning via joint latent similarity embedding[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2016:6034-6042.
[19] PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 22(10):1345-1359.
[20] TURK M A, PENTLAND A P. Face recognition using eigenfaces[C]//Proceedings of 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 1991:586-591.
[21] KINGMA D P, MOHAMED S, REZENDE D J, et al. Semi-supervised learning with deep generative models[C]//Advances in Neural Information Processing Systems, 2014:3581-3589.
[22] BUCCINO G, VOGT S, RITZL A, et al. Neural circuits underlying imitation learning of hand actions:An event-related fMRI study[J]. Neuron, 2004, 42(2):323-334.
[23] SMEULDERS A W M, WORRING M, SANTINI S, et al. Content-based image retrieval at the end of the early years[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2000(12):1349-1380.
[24] BLACKMAN S. Multiple-target tracking with radar applications[M]. Dedham:Artech House, Inc., 1986.
[25] FREEMAN W T, ROTH M. Orientation histograms for hand gesture recognition[C]//International Workshop on Automatic Face and Gesture Recognition, 1995:296-301.
[26] XU K, BA J, KIROS R, et al. Show, attend and tell:Neural image caption generation with visual attention[C]//International Conference on Machine Learning, 2015:2048-2057.
[27] ANTOL S, AGRAWAL A, LU J, et al. Vqa:Visual question answering[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2015:2425-2433.
[28] MEDIONI G, COHEN I, BRÉMOND F, et al. Event detection and analysis from video streams[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(8):873-889.
[29] BENGIO Y, DUCHARME R, VINCENT P, et al. A neural probabilistic language model[J]. Journal of Machine Learning Research, 2003, 3(2):1137-1155.
[30] ZOPH B, LE Q V. Neural architecture search with reinforcement learning[EB/OL]. (2016-11-5)[2019-11-20]. https://arxiv.xilesou.top/pdf/1611.01578.
[31] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2017:2980-2988.
[32] WANG Y, YAO Q. Few-shot learning:A survey[EB/OL]. (2019-04-10)[2019-03-13]. https://arxiv.xilesou.top/pdf/1904.05046.
[33] RUSSAKOVSKY O, LI F F. Attribute learning in large-scale datasets[C]//European Conference on Computer Vision. Heidelberg:Springer, 2010:1-14.
[34] VILALTA R, DRISSI Y. A perspective view and survey of meta-learning[J]. Artificial Intelligence Review, 2002, 18(2):77-95.
[35] KODIROV E, XIANG T, FU Z, et al. Unsupervised domain adaptation for zero-shot learning[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2015:2452-2460.
[36] ZHU X, GOLDBERG A B. Introduction to semi-supervised learning[J]. Synthesis Lectures on Artificial Intelligence and Machine Learning, 2009, 3(1):1-130.
[37] BARLOW H B. Unsupervised learning[J]. Neural Computation, 1989, 1(3):295-311.
[38] ROSENBERG C, HEBERT M, SCHNEIDERMAN H. Semi-supervised self-training of object detection models[C]//2005 Seventh IEEE Workshops on Applications of Computer Vision. Piscataway:IEEE Press, 2005.
[39] ZHOU Z H. A brief introduction to weakly supervised learning[J]. National Science Review, 2018, 5(1):44-53.
[40] TORREY L, SHAVLIK J. Transfer learning[M]//Handbook of research on machine learning applications and trends:Algorithms, methods, and techniques. Hershey:IGI Global, 2009:242-264.
[41] BROWN A L, CAMPIONE J C, DAY J D. Learning to learn:On training students to learn from texts[J]. Educational Researcher, 1981, 10(2):14-21.
[42] HOCHREITER S, YOUNGER A S, CONWELL P R. Learning to learn using gradient descent[C]//International Conference on Artificial Neural Networks. Heidelberg:Springer, 2001:87-94.
[43] PALATUCCI M, POMERLEAU D, HINTON G E, et al. Zero-shot learning with semantic output codes[C]//Advances in Neural Information Processing Systems, 2009:1410-1418.
[44] ZHANG Z, SALIGRAMA V. Zero-shot learning via semantic similarity embedding[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2015:4166-4174.
[45] CHANGPINYO S, CHAO W L, GONG B, et al. Synthesized classifiers for zero-shot learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2016:5327-5336.
[46] KODIROV E, XIANG T, GONG S. Semantic autoencoder for zero-shot learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2017:3174-3183.
[47] ZHANG T, JOHNSON D. A robust risk minimization based named entity recognition system[C]//Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003-Volume 4, 2003:204-207.
[48] CHEN W Y, LIU Y C, KIRA Z, et al. A closer look at few-shot classification[EB/OL]. (2019-04-08)[2019-01-12]. https://arxiv.xilesou.top/pdf/1904.04232.
[49] VAN DYK D A, MENG X L. The art of data augmentation[J]. Journal of Computational and Graphical Statistics, 2001, 10(1):1-50.
[50] HARIHARAN B, GIRSHICK R. Low-shot visual recognition by shrinking and hallucinating features[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2017:3018-3027.
[51] CHEN Z, FU Y, ZHANG Y, et al. Multi-level semantic feature augmentation for one-shot learning[J]. IEEE Transactions on Image Processing, 2019, 28(9):4594-4605.
[52] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507.
[53] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Advances in Neural Information Processing Systems, 2014:2672-2680.
[54] PERARNAU G, VAN DE WEIJER J, RADUCANU B, et al. Invertible conditional gans for image editing[EB/OL].[2016-11-19]. https://arxiv.xilesou.top/pdf/1611.06355.
[55] CHU C, ZHMOGINOV A, SANDLER M. Cyclegan, a master of steganography[EB/OL].(2017-12-08)[2017-12-16]. https://arxiv.xilesou.top/pdf/1712.02950.
[56] HOSSEINI-ASL E, ZHOU Y, XIONG C, et al. Augmented cyclic adversarial learning for low resource domain adaptation[EB/OL]. (2018-07-01)[2019-01-23]. https://arxiv.xilesou.top/pdf/1807.00374.
[57] JUANG B H, RABINER L R. Hidden Markov models for speech recognition[J]. Technometrics, 1991, 33(3):251-272.
[58] CHEN Z, FU Y, CHEN K, et al. Image block augmentation for one-shot learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019:3379-3386.
[59] CHEN Z, FU Y, WANG Y X, et al. Image deformation meta-networks for one-shot learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2019:8680-8689.
[60] VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching networks for one shot learning[C]//Advances in Neural Information Processing Systems, 2016:3630-3638.
[61] SNELL J, SWERSKY K, ZEMEL R. Prototypical networks for few-shot learning[C]//Advances in Neural Information Processing Systems, 2017:4077-4087.
[62] SUNG F, YANG Y, ZHANG L, et al. Learning to compare:Relation network for few-shot learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018:1199-1208.
[63] BERTINETTO L, HENRIQUES J F, TORR P H S, et al. Meta-learning with differentiable closed-form solvers[EB/OL]. (2018-05-21)[2019-12-20]. https://arxiv.xilesou.top/pdf/1805.08136.
[64] GARCIA V, BRUNA J. Few-shot learning with graph neural networks[EB/OL]. (2017-11-10)[2019-12-20]. https://arxiv.xilesou.top/pdf/1711.04043.
[65] HUANG Z, XU W, YU K. Bidirectional LSTM-CRF models for sequence tagging[EB/OL]. (2015-08-09)[2019-12-20]. https://arxiv.xilesou.top/pdf/1508.01991.
[66] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017:5998-6008.
[67] QI H, BROWN M, LOWE D G. Low-shot learning with imprinted weights[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018:5822-5830.
[68] GIDARIS S, KOMODAKIS N. Dynamic few-shot visual learning without forgetting[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018:4367-4375.
[69] MOTIIAN S, PICCIRILLI M, ADJEROH D A, et al. Unified deep supervised domain adaptation and generalization[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2017:5715-5725.
[70] MOTIIAN S, JONES Q, IRANMANESH S, et al. Few-shot adversarial domain adaptation[C]//Advances in Neural Information Processing Systems, 2017:6670-6680.
[71] FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[C]//Proceedings of the 34th International Conference on Machine Learning, 2017:1126-1135.
[72] RUSU A A, RAO D, SYGNOWSKI J, et al. Meta-learning with latent embedding optimization[EB/OL]. (2018-07-16)[2019-12-20]. https://arxiv.xilesou.top/pdf/1807.05960.
[73] RAVI S, LAROCHELLE H. Optimization as a model for few-shot learning[C]//International Conference on Learning Representations (ICLR), 2017.
[74] SANTORO A, BARTUNOV S, BOTVINICK M, et al. Meta-learning with memory-augmented neural networks[C]//International Conference on Machine Learning, 2016:1842-1850.
[75] HILLIARD N, PHILLIPS L, HOWLAND S, et al. Few-shot learning with metric-agnostic conditional embeddings[EB/OL]. (2018-02-12)[2019-12-20]. https://arxiv.xilesou.top/pdf/1802.04376.
[76] KINGMA D P, BA J. Adam:A method for stochastic optimization[EB/OL]. (2014-12-22)[2019-12-20]. https://arxiv.xilesou.top/pdf/1412.6980.
[77] DAI J, HE K, SUN J. Instance-aware semantic segmentation via multi-task network cascades[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2016:3150-3158.
[78] WEI S E, RAMAKRISHNA V, KANADE T, et al. Convolutional pose machines[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2016:4724-4732.
[79] ANDERSON P, HE X, BUEHLER C. Bottom-up and top-down attention for image captioning and visual question answering[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2016:6077-6086.
[80] 刘芳, 王洪娟, 黄光伟, 等. 基于自适应深度网络的无人机目标跟踪算法[J]. 航空学报, 2019,40(3):322332. LIU F, WANG H J, HUANG G W, et al. UAV target tracking algorithm based on adaptive depth network[J]. Acta Aeronautica et Astronautica Sinica,2019,40(3):322332(in Chinese).
[81] 张菁, 何友, 彭应宁, 等. 基于神经网络和人工势场的协同博弈路径规划[J]. 航空学报, 2019,40(3):322493. ZHANG J, HE Y, PENG Y N, et al. Neural network and artificial potential field based cooperative and adversarially path planning[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3):322493(in Chinese).
[82] 石叶楠, 郑国磊. 三种用于加工特征识别的神经网络方法综述[J]. 航空学报, 2019, 40(9):022840. SHI Y N, ZHENG G L. A review of three neural network methods for manufacturing feature recognition[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9):022840(in Chinese).
[83] 王华夏, 程咏梅, 刘楠. 面向山地区域光照变化下的鲁棒景象匹配方法[J]. 航空学报, 2017,38(10):321101. WANG H X, CHENG Y M, LIU N. A robust scene matching method for mountainous region with illumination variation[J]. Acta Aeronautica et Astronautica Sinica,2017,38(10):321101(in Chinese).
[84] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft coco:Common objects in context[C]//European Conference on Computer Vision, 2014:740-755.
[85] KUZNETSOVA A, ROM H, ALLDRIN N, et al. The open images dataset v4:Unified image classification, object detection, and visual relationship detection at scale[EB/OL]. (2018-11-02)[2019-12-20]. https://arxiv.xilesou.top/pdf/1811.00982.
[86] REN S, HE K, GIRSHICK R, et al. Faster R-CNN:Towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems, 2015:91-99.
[87] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:Unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2016:779-788.
[88] SUN Z, BEBIS G, MILLER R. On-road vehicle detection:A review[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2006(5):694-711.
[89] DOLLÁR P, WOJEK C, SCHIELE B, et al. Pedestrian detection:A benchmark[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2009:304-311.
[90] SCHWARTZ E, KARLINSKY L, SHTOK J, et al. RepMet:Representative-based metric learning for classification and one-shot object detection[EB/OL]. (2018-06-12)[2019-12-20]. https://arXiv.preprintarXiv:1806.04728.
[91] CHEN H, WANG Y, WANG G, et al. A low-shot transfer detector for object detection[C]//Thirty-Second AAAI Conference on Artificial Intelligence, 2018.
[92] ZHANG T, ZHANG Y, SUN X, et al. Comparison network for one-shot conditional object detection[EB/OL]. (2019-4-4)[2019-12-20]. https://arxiv.xilesou.top/pdf/1904.02317.
[93] HSIEH T I, LO Y C, CHEN H T, et al. One-shot object detection with co-attention and co-excitation[C]//Advances in Neural Information Processing Systems, 2019:2721-2730.
[94] FAN Q, ZHUO W, TAI Y W. Few-shot object detection with attention-RPN and multi-relation detector[EB/OL] (2019-08-06)[2019-12-20]. https://arxiv.org/abs/1908.01998.
[95] RAHMAN S, KHAN S, PORIKLI F. Zero-shot object detection:Learning to simultaneously recognize and localize novel concepts[C]//Asian Conference on Computer Vision, 2018:547-563.
[96] ZHU P, WANG H, SALIGRAMA V. Zero shot detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 30(4):998-1010.
[97] BANSAL A, SIKKA K, SHARMA G, et al. Zero-shot object detection[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018:384-400.
[98] DEMIREL B, CINBIS R G, IKIZLER-CINBIS N. Zero-shot object detection by hybrid region embedding[EB/OL]. (2018-5-16)[2019-12-20]. https://arxiv.xilesou.top/pdf/1805.06157.
[99] RAHMAN S, KHAN S, BARNES N. Polarity loss for zero-shot object detection[EB/OL]. (2018-11-22)[2019-12-20]. https://arxiv.xilesou.top/pdf/1811.08982.