Fluid Mechanics and Flight Mechanics

Control law of passive fluid thrust vector nozzle based on thermal jet of micro turbojet engine

  • GONG Dongsheng ,
  • GU Yunsong ,
  • ZHOU Yuhang ,
  • SHI Nanxing
Expand
  • Laboratory of Unsteady Aerodynamics and Flow Control, Ministry of Industry and Information Technology, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2019-10-24

  Revised date: 2019-12-23

  Online published: 2019-12-19

Supported by

National Natural Science Foundation of China (11672134)

Abstract

Fluid thrust vector nozzle has many advantages such as fixed surface, less active parts, lighter structure weight, and faster jet deflection. It can provide highly efficient flight control for high maneuvering aircraft, but its control law has not been fully researched, especially in the state of the main jet deflecting under the state of hot jet. Therefore, we design and develop the high temperature nozzle model for the micro turbojet engine, and study the control law of the nozzle under the state of the hot jet based on the micro turbojet engine. The characteristics of the static deflection of the main jet are studied by the infrared thermal imaging technology and the Particle Image Velocimetry (PIV). Using these non-contact optical measurements, the control law of the flow vector angle to the opening of the secondary flow valve is obtained. The mechanical characteristics of passive fluid vector nozzle are studied by a force measurement experiment using box balance, and the control law of thrust vector angle varying with the closure of secondary flow control valve is obtained. The results show that the main jet deflects continuously and controllably. The maximum flow vector angle is -12.3°/12.3°, and the maximum thrust vector angle is -12.9 °/12.8°. The control law is close to linear, and there is no sudden deflection of the main jet.

Cite this article

GONG Dongsheng , GU Yunsong , ZHOU Yuhang , SHI Nanxing . Control law of passive fluid thrust vector nozzle based on thermal jet of micro turbojet engine[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(10) : 123609 -123609 . DOI: 10.7527/S1000-6893.2019.23609

References

[1] WAITHE K A, DEERE K A. Experimental and computational investigation of multiple injection ports in a convergent-divergent nozzle for fluidic thrust vectoring:AIAA-2003-3802[R]. Reston:AIAA, 2003.
[2] 程荣辉, 张志舒, 陈仲光. 第四代战斗机动力技术特征和实现途径[J].航空学报, 2019, 40(3):022698. CHENG R H, ZHANG Z S, CHEN Z G. Technical characteristics and implementation of the fourth-generation jet fighter engines[J].Acta Aeronautica et Astronautica Sinica, 2019, 40(3):022698(in Chinese).
[3] 汤伟, 黄勇, 傅澔. 推力矢量对飞机大迎角动态气动特性的影响[J].航空学报, 2018, 39(4):121648. TANG W, HUANG Y, FU H. Effect of thrust vector on dynamic aerodynamic characteristics of aircraft at high angle of attack[J].Acta Aeronautica et Astronautica Sinica, 2018, 39(4):121648(in Chinese).
[4] 宋亚飞, 高峰, 何至林. 流体推力矢量技术[J].飞航导弹, 2010(11):71-75. SONG Y F, GAO F, HE Z L. Fluid thrust vector technology[J].Winged Missile Journal, 2010(11):71-75(in Chinese).
[5] 肖中云,江雄,牟斌,等.流体推力矢量技术研究综述[J].实验流体力学,2017,31(4):8-15. XIAO Z Y, JIANG X, MOU B, et al. Review of fluid thrust vector technology[J].Journal of Experiments in Fluid Mechanics, 2017,31(4):8-15(in Chinese).
[6] HALOULAKOS V E. Fluidic thrust vector control[C]//1982 American Control Conference. Piscataway:IEEE Press, 1982:1164-1165.
[7] CATON J L. Two-dimensional confined jet thrust vector control:Operating mechanisms and performance[R]. Wright-Patterson AFB:Air Force Institution of Technology, 1989.
[8] PANITZ T, WASAN D T. Flow attachment to solidsurfaces:The Coanda effect[J].AIChE Journal,1972,18(1):51-57.
[9] STRYKOWSKI P J, NICCUM D L. The stability of countercurrent mixing layers in circular jets[J].Journal of Fluidic Mechanics,1991,227(1):309-343.
[10] CHIARELLI C, JOHNSEN R K, SHIEH C F, et al. Fluidic scale model multi-plane thrust vector control test result:AIAA-1993-2433[R]. Reston:AIAA, 1993.
[11] 王强,付尧明,额日其太.流体注入的轴对称矢量喷管三维流场计算[J].推进技术,2002,23(6):441-444. WANG Q, FU Y M, ERIQITAI. 3-D flow field calculation of axisymmetric vectoring nozzle with fluid injection[J].Journal of Propulsion Technology,2002,23(6):441-444(in Chinese).
[12] WING D J. Static performance investigation of a skewed-throat multiaxis thrust-vectoring nozzel concept:NASA TP 3411[R]. Washington, D.C.:NASA, 1994.
[13] CATT J A, MILLER D N, GIULIANO V J. A static investigation of fixed-geometry nozzle using fluidic injection for throat aera control:AIAA-1995-2064[R]. Reston:AIAA, 1995.
[14] 范志鹏,徐惊雷,郭帅.次流通道对双喉道气动矢量喷管的性能影响研究[J].推进技术,2014, 35(9):1174-1180. FAN Z P, XU J L, GUO S. Effects of secondary injection pipe on dual throat nozzle thrust-vectoring performances[J].Journal of Propulsion Technology, 2014, 35(9):1174-1180(in Chinese).
[15] GU R, XU J L. Effects of cavity on the performance of dual throat nozzle during the thrust-vectoring starting transient process[J].Journal of Engineering for Gas Turbines and Power, 2013,136(1):014502.
[16] 谭慧俊,陈智.二元双喉道射流推力矢量喷管流动参数影响的数值模拟研究[J].空气动力学学报,2015,33(2):211-217. TAN H J, CHEN Z. Numerical simulation study onflow parameters of two element double throat jet thrust vectoring nozzle[J].Acta Aerodynamica Sinica, 2015,33(2):211-217(in Chinese).
[17] 李念, 张堃元, 徐惊雷. 二维非对称喷管数值模拟与验证[J].航空动力学报, 2004, 19(6):63-66. LI N, ZHANG K Y, XU J L. Simulation and experiment validation of a two dimensional asymmetric ramp nozzle[J].Journal of Aerospace Power, 2004, 19(6):63-66(in Chinese).
[18] SONG M J, CHANG H B, PARK S H. et al. Application of back-step Coanda flap for the supersonic co-flowing fluidic thrust vector control:AIAA-2013-3951[R]. Reston:AIAA, 2013.
[19] SEKAR T C, KUSHARI A, MODY B, et al. Fluidic thrust vectoring using transverse jet injection in a converging nozzle with aft-deck[J].Experimental Thermal and Fluid Science,2017,86:189-203.
[20] SAVVARIS A, BUONANNO A, TSOURDOS A. Design and development of the DEMON UAV fluidic flight control system:AIAA-2013-4820[R]. Reston:AIAA, 2013.
[21] WILDE P I, BUONANNO A, CROWTHER W, et al. Aircraft control using fluidic maneuver effectors:AIAA-2008-6406[R]. Reston:AIAA, 2008.
[22] DEERE K A. Summary of fluidic thrust vectoring research conducted at NASA Langley research center:AIAA-2003-3800[R]. Reston:AIAA, 2003.
[23] 连永久.射流推力矢量控制技术研究[J].飞机设计,2008,28(2):19-24. LIAN Y J. Fluidic thrust vectoring techniques research[J].Journal of Aircraft Design,2008,28(2):19-24(in Chinese).
[24] 顾瑞.新型双喉道气动矢量喷管机理与关键技术研究[D].南京:南京航空航天大学, 2013. GU R. Research on the key technology of new dual throat fluidic vectoring thrust nozzle[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2013(in Chinese).
[25] 林泳辰, 徐惊雷, 韩杰星, 等.气动推力矢量无舵面飞翼的飞行实验[J].航空动力学报,2019,34(3):701-707. LIN Y C, XU J L, HAN J X, et al. Flight test of a fluidic thrust vectoring flying wing without rudder[J].Journal of Aerospace Power, 2019, 34(3):701-707(in Chinese).
[26] 曹永飞.射流推力矢量控制[D].南京:南京航空航天大学,2012. CAO Y F. Jet thrust vector control[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2012(in Chinese).
[27] 肖中云,顾蕴松,江雄,等.一种基于引射效应的流体推力矢量新技术研究[J].航空学报,2012,33(11):1967-1974. XIAO Z Y, GU Y S, JIANG X, et al. A New technology of fluid thrust vector based on ejection effect[J].Acta Aeronautica et Astronautica Sinca,2012,33(11):1967-1974(in Chinese).
[28] 曹永飞,顾蕴松,程克明,等.基于被动二次流的射流偏转比例控制[J].航空学报,2015,36(3):757-763. CAO Y F, GU Y S, CEHNG K M, et al. Proportional control of jet deflecting based on passive secondary flow[J].Acta Aeronautica et Astronautica Sinica,2015,36(3):757-763(in Chinese).
[29] 韩杰星. 流体矢量喷管内外流耦合研究[D].南京:南京航空航天大学, 2018. HAN J X. A study for the inner-outer flow couping of the fluid thrust vector nozzle[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2018(in Chinese).
Outlines

/