Formation reconstruction is an important issue in the control of Unmanned Aerial Vehicles (UAVs). It refers to the transformation of UAVs from one formation to another in a safe and collisionfree manner following the requirements. The difficulty lies in rapidly planning the optimal safety trajectory and controlling UAVs for high-precision tracking of trajectory attitude. The above problems of formation reconstruction of UAVs are studied. Firstly, based on the algorithm of Concurrent Assignment and Planning of Trajectories(CAPT), the real-time problem of target allocation and trajectory generation of UAVs is solved, which realizes the optimal safe path planning. Secondly, a finite time multivariable integral sliding mode control algorithm is proposed to solve the high-precision trajectory and attitude tracking problem of UAVs. MATLAB simulation verifies the effectiveness of this control alqorithm. Finally, in order to simulate the UAV more directly and accurately, the UAV simulation platform based on the Gazebo-ROS structure is built, which realizes the whole "modeling, simulation and visualization" simulation process of formation reconstruction of 12 UAVs. The results verify the applicability of the above control strategy and path planning algorithm.
LU Yanmei
,
ZONG Qun
,
ZHANG Xiuyun
,
LU Hanchen
,
ZHANG Ruilong
. Formation reconstruction and virtual simulation verification of swarm UAVs[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020
, 41(4)
: 323580
-323580
.
DOI: 10.7527/S1000-6893.2019.23580
[1] 张佳龙,闫建国,张普.基于反步推演法的多机编队队形重构控制[J].航空学报, 2019, 40(11):323177. ZHANG J L, YAN J G, ZHANG P. Multi-UAV formation forming reconfiguration control based on back-stepping method[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(11):323177(in Chinese).
[2] 顾伟,汤俊,白亮,等.面向时间协同的多无人机队形变换最优效率模型[J].航空学报, 2019, 40(6):322599. GU W, TANG J, BAI L, et al. Time synergistic optimal efficiency model for formation transformation of multiple UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6):322599(in Chinese).
[3] KUHN H W. The Hungarian method for the assignment problem[J]. Naval Research Logistics Quarterly, 1955, 2(1-2):83-97.
[4] HART P E, NILSSON N J, RAPHAEL B. A formal basis for the heuristic determination of minimum cost paths[J]. IEEE Transactions on Systems Science and Cybernetics, 1968, 4(2):100-107.
[5] GOLDENBERG M, FELNER A, STERN R, et al. Enhanced partial expansion A*[J]. Journal of Artificial Intelligence Research, 2014, 50(1):141-187.
[6] KUMAR R, HYLAND D C. Control law design using repeated trials[C]//American Control Conference. Piscataway, NJ:IEEE Press, 2001.
[7] SINGH L, FULLER J. Trajectory generation for a UAV in urban terrain, using nonlinear MPC[C]//American Control Conference. Piscataway, NJ:IEEE Press, 2001.
[8] MELLINGER D, KUSHLEYEV A, KUMAR V. Mixed-integer quadratic program trajectory generation for heterogeneous quadrotor teams[C]//2012 IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE Press, 2012.
[9] DEITS R, TEDRAKE R L. Efficient mixed-integer planning for UAVs in cluttered environments[C]//2015 IEEE International Conference on Robotics and Automation (ICRA). Piscataway, NJ:IEEE Press, 2015:42-49.
[10] TURPIN M, MICHAEL N, KUMAR V. CAPT:Concurrent assignment and planning of trajectories for multiple robots[M]. California, CA:Sage Publications, Inc., 2014:98-112.
[11] TANG S, KUMAR V. A complete algorithm for generating safe trajectories for multi-robot teams[M]. Berlin:Robotics Research, 2018:599-616.
[12] TANG S, THOMAS J, KUMAR V. Hold Or take Optimal Plan (HOOP):A quadratic programming approach to multi-robot trajectory generation[J]. The International Journal of Robotics Research, 2018, 37(9), 1062-1084.
[13] QU S, XIA X, ZHANG J. Dynamics of discrete-time sliding-mode-control uncertain systems with a disturbance compensator[J]. IEEE Transactions on Industrial Electronics, 2014, 61(7):3502-3510.
[14] ZHOU W D, ZHU P X, WANG C L, et al. Position and attitude tracking control for a quadrotor UAV based on terminal sliding mode control[C]//201534th Chinese Control Conference (CCC). Piscataway, NJ:IEEE Press, 2015.
[15] JAYAKRISHNAN H J. Position and attitude control of a quadrotor UAV using super twisting sliding mode[J]. IFAC, 2016, 49(1):284-289.
[16] TIAN B L, LIU L H, LU H C, et al. Multivariable finite time attitude control for quadrotor UAV:Theory and experimentation[J]. IEEE Transactions on Industrial Electronics, 2018, 65(3):2567-2577.
[17] ZHANG X Y, ZONG Q, TIAN B L, et al. Continuous robust fault-tolerant control and vibration suppression for flexible spacecraft without angular velocity[J]. International Journal of Robust and Nonlinear Control, 2019, 29(12):3915-3935.
[18] TIAN B L, MA Y X, LIU L H, et al. Adaptive multivariable finite-time attitude control for quadrotor UAV[C]//201837th Chinese Control Conference (CCC). Piscataway, NJ:IEEE Press, 2018:9792-9796.
[19] 马广富,朱庆华,王鹏宇,等.基于终端滑模的航天器自适应预设性能姿态跟踪控制[J].航空学报, 2018, 39(6):321763. MA G F, ZHU Q H, WANG P Y, et al. Spacecraft adaptive preset performance attitude tracking control based on terminal sliding model[J]. Acta Aeronautica et Astronautica Sinica,2018, 39(6):321763(in Chinese).
[20] 张秀云,宗群,窦立谦,等.柔性航天器振动主动抑制及姿态控制[J].航空学报, 2019, 40(4):322503. ZHANG X Y, ZONG Q, DOU L Q, et al. Active vibration suppression and attitude control for flexible spacecraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4):322503(in Chinese).
[21] YU X, LI P, ZHANG Y. The design of fixed-time observer and finite-time fault-tolerant control for hypersonic gliding vehicles[J]. IEEE Transactions on Industrial Electronics, 2017, 65(5):4135-4144.
[22] MELLINGER D, KUMAR V. Minimum snap trajectory generation and control for quadrotors[C]//2011 IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE Press, 2011:2520-2525.
[23] MUELLER M W, HEHN M, D'ANDREA R. A computationally efficient motion primitive for quadrocopter trajectory generation[J]. IEEE Transactions on Robotics, 2015, 31(6):1294-1310.
[24] BHAT S P, BERNSTEIN D S. Continuous finite-time stabilization of the translational and rotational double integrators[J]. IEEE Transactions on Automatic Control, 1998, 43(5):678-682.
[25] TIAN B, LU H, ZUO Z, et al. Multivariable finite-time output feedback trajectory tracking control of quadrotor helicopters[J]. International Journal of Robust and Nonlinear Control, 2018, 28(1):281-295.
[26] GAZEBO. Gazebo Tutorials[EB/OL].(2014-01-01)[2019-09-02]. http://gazebosim.org/tutorials.