Based on the decline analysis of aerodynamic characteristic with leading edge erosion, the fan rotor of a small type and high bypass ratio turbofan engine is employed to investigate the leading edge maintenance method. Since the manually polished method may bring uncertainty to the blade aerodynamic characteristics because of its various leading shapes, this paper aims at the eroded leading edge, makes comprehensive controlling of leading edge with detailed parameters, and utilizes genetic algorithm to identify the best leading edge maintenance plan under geometric constrains. Numerical results show that optimum maintenance method of eroded leading edge could improve the aerodynamic characteristics obviously. Compared with the eroded blade, the best maintenance plan could increase the isentropic efficiency of fan rotor with 1.21% and 3.01% at the designed point and near stall condition showing good aerodynamic characteristics and nearly making the aerodynamic performance of repaired fan blade back to the initial level. The leading edge can significantly affect the development of boundary layer of suction surface, and the best maintenance plan can effectively reduce the thickness of boundary layer thickness near the leading edge and decrease the flow loss of the boundary layer.
SHI Lei
,
YANG Guang
,
DING Guanghua
,
LIN Wenjun
. Fine maintenance of an eroded fan rotor and related flow characteristics analysis[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020
, 41(9)
: 423446
-423446
.
DOI: 10.7527/S1000-6893.2019.23446
[1] 孙振岚, 海军. 我国民航运输业建设现状与未来发展[J]. 国防交通工程与技术, 2019,17(1):1-3. SUN Z L, HAI J. On the present situation and the future development of the construction of the civil aviation transportation in China[J]. Traffic Engineering and Technology for National Defence, 2019,17(1):1-3(in Chinese).
[2] 2018年民航机场生产统计公报[EB/OL]. http://www.mot.gov.cn/tongjishuju/minhang/201903/t20190318_3177639.html. Bulletin of statistics on civil aviation airport production in 2018[EB/OL]. http://www.mot.gov.cn/tongjishuju/minhang/201903/t20190318_3177639.html (in Chinese).
[3] 史磊, 杨光, 林文俊. 前缘侵蚀对风扇转子叶片气动特性影响机理分析[J]. 航空学报, 2019,40(10):123007. SHI L, YANG G, LIN W J. The mechanism investigation of leading edge erosion's effect on the performance of fan blade[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10):123007(in Chinese).
[4] 陈云永, 杨小贺, 卫飞飞. 大涵道比风扇设计技术发展趋势[J]. 航空学报, 2017, 38(9):520953. CHEN Y Y, YANG X H, WEI F F. Development trend of high bypass ratio turbofans design technology[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(9):520953(in Chinese).
[5] 中国南方航空. 2018年度业绩发布会[EB/OL]. (2018-04-09)[2019-08-11]. http://10.115.242.8/files/C1200000028E12CD/webcast.live.wisdomir.com/csair_18ar/ppt.pdf. China Southern Airlines. 2018 annual results conference.[EB/OL]. (2018-04-09)[2019-08-11]. http://10.115.242.8/files/C1200000028E12CD/webcast.live.wisdomir.com/csair_18ar/ppt.pdf (in Chinese).
[6] MICHAELS K, 李璇. 发动机叶片的维修与更换[J].航空维修与工程, 2016(1):24-25. MICHAELS K, LI X. Fan blade repair and replacement[J]. Aviation Maintenance & Engineering, 2016(1):24-25(in Chinese).
[7] MESHREKI M, SHI Z, ARRIEN F, et al. Analysis and optimization of robotized grinding of titanium high pressure compressor blades[C]//ASME 2016 International Mechanical Engineering Congress and Exposition New York:ASME, 2016:67064.
[8] DENKENA B, MÜCKE A, SCHUMACHER T, et al. Technology-based recontouring of blade integrated disks after weld repair[J]. Journal of Engineering for Gas Turbines and Power, 2018,140(12):121015.
[9] 张海洋, 杨文玉, 张家军, 等. 叶片机器人砂带磨抛的轨迹规划研究[J]. 机电工程, 2014,31(5):578-581,586. ZHANG H Y, YANG W Y, ZHANG J J, et al. Trajectory planning for robotic belt grinding of turbine blade[J]. Journal of Mechanical & Electrical Engineering, 2014,31(5):578-581,586(in Chinese).
[10] 叶晓华. 航空叶片叶尖自适应修复软件开发[D]. 武汉:华中科技大学, 2016. YE X H. Development of software for aeronautic blade tip adaptive reparation[D]. Wuhan:Huazhong University of Science & Technology, 2016(in Chinese).
[11] 任旭. 机器人砂带磨削航发叶片关键技术研究[D]. 重庆:重庆大学, 2017. REN X. Research on the key technology in robot belt grinding of aero-engine blade[D]. Chongqing:Chongqing University, 2017(in Chinese).
[12] 黄云, 肖贵坚, 邹莱. 航空发动机叶片机器人精密砂带磨削研究现状及发展趋势[J]. 航空学报, 2019,40(3):022508. HUANG Y, XIAO G J, ZOU L. Current situation and development trend of robot precise belt grinding for aero-engine blade[J]. Acta Aeronautica et Astronautica Sinica, 2019,40(3):022508(in Chinese).
[13] 王浩, 王立文, 王涛, 等. 航空发动机损伤叶片再制造修复方法与实现[J]. 航空学报, 2016,37(3):1036-1048. WANG H, WANG L W, WANG T, et al. Method and implementation of remanufacture and repair of aircraft engine damaged blades[J]. Acta Aeronautica et Astronautica Sinica, 2016,37(3):1036-1048(in Chinese).
[14] 刘磊. 航空发动机涡轮叶片在机测量及自适应修复加工技术研究[D]. 武汉:武汉工程大学, 2017. LIU L. Research on on-machine inspection and adaptive repairing technology for aeroengine turbine blade[D]. Wuhan:Wuhan Institute of Technology, 2017(in Chinese).
[15] 空中客车公司.A319/A320/A321飞机维修手册[M]. 2005:601-856. Airbus. A319/A320/A321 aircraft maintenance manual[M]. 2005:601-856(in Chinese).