[1] KIRKA M M, UNOCIC K A, RAGHAVAN N, et al. Microstructure development in electron beam-melted Inconel 718 and associated tensile properties[J]. JOM, 2016, 68(3):1012-1020.
[2] IVANOFF T A, WATT T J, TALEFF E M. Characterization of solidification microstructures in vacuum arc remelted nickel alloy 718[J]. Metallurgical and Materials Transactions B, 2019, 50(2):700-715.
[3] CHEN Z, PENG R L, MOVERARE J, et al. Surface integrity and structural stability of broached Inconel 718 at high temperatures[J]. Metallurgical and Materials Transactions A, 2016, 47(7):3664-3676.
[4] CRUZADO A, LUCARINI S, LLORCA J, et al. Crystal plasticity simulation of the effect of grain size on the fatigue behavior of polycrystalline Inconel 718[J]. International Journal of Fatigue, 2018, 113:236-245.
[5] 杜金辉,吕旭东,邓群,等. GH4169合金研制进展[J].中国材料进展, 2012, 31(12):12-20. DU J H, LV X D, DENG Q, et al. Progress in GH4169 alloy development[J]. Rare Metals Letters, 2012, 31(12):12-20(in Chinese).
[6] CHEN Z Y, YANG S F, LI J S, et al. Effects of different hot working techniques on inclusions in GH4738 superalloy produced by VIM and VAR[J]. Materials, 2018, 11(6):1024.
[7] SCHMIEDT A B, DICKERT H H, BLECK W, et al. Evaluation of maximum non-metallic inclusion sizes in engineering steels by fitting a generalized extreme value distribution based on vectors of largest observations[J]. Acta Materialia, 2015, 95:1-9.
[8] DEGAWA T, OTOTANI T. Refining of high purity Ni-base superalloy using calcia refractory[J]. Tetsu-to-Hagane, 1987, 73(14):1691-1697.
[9] SHEVCHENKO D M, WARD R M. Liquid metal pool behavior during the vacuum arc remelting of inconel 718[J]. Metallurgical and Materials Transactions B, 2009, 40(3):263-270.
[10] CHEN Z Y, YANG S F, QU J L, et al. Effects of different melting technologies on the purity of superalloy GH4738[J]. Materials, 2018, 11(10):1838.
[11] VERMA N, PISTORIUS P C, FRUEHAN R J, et al. Calcium modification of spinel inclusions in Aluminum-Killed steel:reaction steps[J]. Metallurgical and Materials Transactions B, 2012, 43(4):830-840.
[12] DENG Z Y, ZHU M Y. Deoxidation Mechanism of Al-Killed steel during industrial refining process[J]. ISIJ International, 2014, 54(7):1498-1506.
[13] DESCOTES V, BELLOT J P, PERRIN-GUÉRIN V, et al. Titanium nitride (TiN) precipitation in a maraging steel during the vacuum arc remelting (VAR) process-Inclusions characterization and modeling[J]. IOP Conference Series:Materials Science and Engineering, 2016, 143(1):012013.
[14] JIANG M, WANG X H, CHEN B, et al. Laboratory study on evolution mechanisms of non-metallic inclusions in high srength alloyed steel refined by high basicity slag[J]. ISIJ International, 2010, 50(1):95-104.
[15] ZAGREBELNYY D, KRANE M J M. Segregation development in multiple melt vacuum arc remelting[J]. Metallurgical and Materials Transactions B, 2009, 40(3):281-288.
[16] PERICLEOUS K, DJAMBAZOV G, WARD M, et al. A multiscale 3D model of the vacuum arc remelting process[J]. Metallurgical and Materials Transactions A, 2013, 44(12):5365-5376.
[17] BRICKNELL R H, MULFORD R A, WOODFORD D A. The role of sulfur in the air embrittlement of nickel and its alloys[J]. Metallurgical Transactions A, 1982, 13(7):1223-1232.
[18] LI B, GLEESON B. Effects of silicon on the oxidation behavior of Ni-base chromia-forming alloys[J]. Oxidation of Metals, 2006, 65(1-2):101-122.
[19] 柴国明,陈希春,郭汉杰. FGH96高温合金中一次碳化物形成规律[J].中国有色金属学报, 2012, 22(8):2205-2213. CHAI G M, CHEN X C, GUO H J. Formation mechanism of primary carbides in FGH96 superalloy[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(8):2205-2213(in Chinese).
[20] LI M G, MATSUURA H, TSUKIHASHI F. Investigation on the formation mechanism of Ti-bearing non-metallic inclusions in Fe-Al-Ti-ON alloy by inductive separation method[J]. Materials Characterization, 2018, 136:358-366.
[21] JANG J M, SEO S H, HAN J S, et al. Reassessment of TiN (s)=Ti+N equilibration in liquid iron[J]. ISIJ International, 2015, 55(11):2318-2324.
[22] SHATYNSKI S R. The thermochemistry of transition metal carbides[J]. Oxidation of Metals, 1979, 13(2):105-118.
[23] 魏文庆,刘炳强,姜军生,等.热处理对Nb-35Ti-4C合金微观组织和力学行为的影响[J].稀有金属材料与工程, 2017, 46(3):777-782. WEI W Q, LIU B Q, JIANG J S, et al. Effect of heat treatment on microstructure and mechanical behavior of Nb-35Ti-4C alloy[J]. Rare Metal Materials and Engineering, 2017, 46(3):777-782(in Chinese).
[24] 耿鑫,孙诗誉,张志超,等.真空感应炉坩埚材质对Cr12钢纯净度的影响[J].材料与冶金学报, 2015, 14(3):175-181. GENG X, SUN S Y, ZHANG Z C, et al. Effect of crucible materials of vacuum induction furnace on cleanliness of steel Cr12[J]. Journal of Materials and Metallurgy, 2015, 14(3):175-181(in Chinese).
[25] MITCHELL A. Solidification in remelting processes[J]. Materials Science and Engineering:A (Structural Materials:Properties, Microstructure and Processing), 2005, 413-414:10-18.
[26] CHAPELLE P, BELLOT J P, DUVAL H, et al. Modelling of plasma generation and expansion in a vacuum arc:Application to the vacuum arc remelting process[J]. Journal of Physics D:Applied Physics, 2001, 35:137-150.
[27] QU J L, YANG S F, CHEN Z Y, et al. Effect of turning amount on metallurgical qualities and mechanical properties of GH4169 Superalloy[J]. Materials, 2019, 12(11):1852.