[1] HENNE P A. Case for small supersonic civil aircraft[J]. Journal of Aircraft, 2005, 42(3):765-774.
[2] HILTON D A, HUCKEL V, STEINER R, et al. Sonic-boom exposures during FAA Community-Response studies over a 6-month period in the Oklahoma city area:NASA TN D-2539[R]. Washington, D.C.:NASA, 1964.
[3] TAKENO J, MISAKA T, SHIMOYAMA K, et al. Analysis of sonic boom propagation based on the KZK equation:AIAA-2015-0745[R]. Reston, VA:AIAA, 2015.
[4] FUJINOK, KIKUCHI R, SHIMOYAMA K, et al. Effects of uncertainties in atmospheric turbulence and weather predictions on sonic boom:AIAA-2017-0280[R]. Reston, VA:AIAA, 2017.
[5] PIACSEK A A. Atmospheric turbulence conditions leading to focused and folded sonic boom wave fronts[J]. The Journal of the Acoustical Society of America, 2002, 111(1):520-529.
[6] LOCEY L L. Sonic boom postprocessing functions to simulate atmospheric turbulence effects[D]. Commonwealth, PA:The Pennsylvania State University, 2008.
[7] LUQUET D. 3D simulation of acoustical shock waves propagation through a turbulent atmosphere:Application to sonic boom[D]. Paris:Sorbonne University, 2016.
[8] YAMASHITA H, OBAYASHI S. Sonic boom variability due to homogeneous atmospheric turbulence[J]. Journal of Aircraft, 2009, 46(6):1886-1893.
[9] 乔建领, 韩忠华, 丁玉临, 等. 基于广义Burgers方程的超声速客机远场声爆高精度预测方法[J]. 空气动力学学报, 2019, 37(4):663-674. QIAN J L, HAN Z H, DING Y L, et al. Sonic boom prediction method for supersonic transports based on augmented Burgers equation[J]. Acta Aerodynamica Sinica, 2019, 37(4):663-674(in Chinese).
[10] 韩忠华, 乔建领, 丁玉临, 等. 新一代环保型超声速客机关键技术与研究进展[J]. 空气动力学学报, 2019, 37(4):620-635. HAN Z H, QIAN J L, DING Y L, et al. Key technologies for next generation environmentally-friendly supersonic transport aircraft:A review of recent progress[J]. Acta Aerodynamica Sinica, 2019, 37(4):620-635(in Chinese).
[11] 王刚, 马博平, 雷知锦, 等. 典型标模音爆的数值预测与分析[J].航空学报, 2018,39(1):164-176. WANG G, MA B P, LEI Z J, et al. Simulation and analysis for sonic boom on several benchmark cases[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):164-176(in Chinese).
[12] 张绎典, 黄江涛, 高正红. 基于增广Burgers方程的音爆远场计算及应用[J]. 航空学报, 2018, 39(7):122039. ZHANG Y D, HUANG J T, GAO Z H. Far field simulation and applications of sonic boom based on augmented Burgers equation[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7):122039(in Chinese).
[13] 钱战森, 刘中臣, 冷岩, 等. OS-X0试验飞行器声爆特性测量与数值模拟分析[J]. 空气动力学学报, 2019, 37(4):675-682. QIAN Z S, LIU Z C, LENG Y, et al. Flight measurement and numerical simulation of sonic boom signature of OS-X0 experimental aircraft[J]. Acta Aerodynamica Sinica, 2019, 37(4):675-682(in Chinese).
[14] 冷岩, 钱战森, 刘中臣. 超声速条件下旋成体声爆典型影响因素分析[J]. 空气动力学学报, 2019, 37(4):655-662, 689. LENG Y, QIAN Z S, LIU Z C. Analysis on typical parameters of bodies of revolution affecting the sonic boom[J]. Acta Aerodynamica Sinica, 2019, 37(4):655-662, 689(in Chinese).
[15] 刘中臣, 钱战森, 冷岩. 声爆近场空间压力风洞试验技术研究进展[J]. 空气动力学学报, 2019, 37(4):636-645. LIU Z C, QIAN Z S, LENG Y. Review of recent progress of wind tunnel measurement techniques for off-body sonic boom pressure[J]. Acta Aerodynamica Sinica, 2019, 37(4):636-645(in Chinese).
[16] 徐悦, 宋万强. 典型低音爆构型的音爆计算研究[J]. 航空科学与技术, 2016, 27(7):12-16. XU Y, SONG W Q. Near field sonic boom calculation on typical LSB configurations[J]. Aeronautical Science & Technology, 2016, 27(7):12-16(in Chinese).
[17] 兰世隆. 超声速民机声爆理论、预测和最小化方法概述[J]. 空气动力学学报, 2019, 37(4):646-654, 645. LAN S L. Overview of sonic boom theory, prediction and minimization methods for supersonic civil aircraft[J]. Acta Aerodynamica Sinica, 2019, 37(4):646-654, 645(in Chinese).
[18] LIU Y, WANG L, QIAN Z S. Numerical investigation on the assistant restarting method of variable geometry for high Mach number inlet[J]. Aerospace Science and Technology, 2018, 79:647-657.
[19] LENG Y, QIAN Z S. Sonic boom signature analysis for a type of hypersonic long-range civil vehicle:AIAA-2017-2244[R]. Reston, VA:AIAA, 2017.
[20] XIANG X H, LIU Y, QIAN Z S. Investigation of a wide range adaptable hypersonic dual-waverider integrative design method based on two different types of 3D inward-turning inlets:AIAA-2017-2110[R]. Reston,VA:AIAA, 2017.
[21] LI H M, QIAN Z S. Implementation of three different transition methods and comparative analysis of the results computed by OVERSET software:AIAA-2016-3491[R]. Reston, VA:AIAA, 2016.
[22] LENG Y, QIAN Z S. A CFD based sonic boom prediction method and investigation on the parameters affecting the sonic boom signature[C]//Proceeding of 2014 Asia-Pacific International Symposium on Aerospace Technology, 2014.
[23] BECHARA W, BAILLY C, LAFON P, et al. Stochastic approach to noise modeling for free turbulent flows[J]. AIAA Journal, 1994, 32(3):455-463.
[24] RISSO F, CORJON A, STOESSEL A. Direct numerical simulations of wake vortices in intense homogeneous turbulence[J]. AIAA Journal, 1997, 35(6):1030-1040.
[25] THOMAS C L. Extrapolation of sonic boom pressure signatures by the waveform parameter method:NASA TN D-6832[R]. Washington, D.C.:NASA, 1972.
[26] THOMAS C L. Extrapolation of wind-tunnel sonic boom signatures without use of a Whitham F-Function:NASA SP-255[R]. Washington, D.C.:NASA, 1970.
[27] BLANCl B P, LIPKENS B, DALLOIS L, et al. Propagation of finite amplitude sound through turbulence:Modeling with geometrical acoustics and the parabolic approximation[J]. Journal of the Acoustical Society of America, 2002, 111(1-2):487-498.
[28] CHEMYSHEV S L, KISELEV A P, VOROTNIKOV P P. Sonic boom minimization and atmospheric effects:AIAA-2008-0058[R]. Reston, VA:AIAA, 2008.
[29] HINZE J. Turbulence[M]. 2nd ed. New York:McGraw-Hill, 1975:175-320.
[30] KARWEIT M. Simulation of the propagation of an acoustic wave through a turbulent velocity field:A study of phase variance[J]. The Journal of the Acoustical Society of America, 1991, 89(1):52-62.
[31] WALID B, CHRISTOPHE B, PHILIPPE L. Stochastic approach to noise modeling for free turbulent flows[J]. AIAA Journal, 1994, 32(3):455-463.
[32] 盛裴轩. 大气物理学[M]. 北京:北京大学出版社, 2003. SHENG P X. Atmospheric physics[M]. Beijing:Peking University Press, 2003(in Chinese).
[33] HUBBARD H H, MAGLIERI D J, HUCKEL V, et al. Ground measurements of sonic boom pressures for the altitude range of 10,000 to 75,000 feet:NASA TR R-198[R]. Washington, D.C.:NASA, 1964.
[34] GARRICK I E, MAGLIERI D J. A summary of results on sonic boom pressure signature variations associated with atmospheric conditions:NASA TN D-4588[R]. Washington, D.C.:NASA, 1968.
[35] PLOTKIN K J, HAERING E A, MUAARY J E, et al. Ground data collection of shaped sonic boom experiment aircraft pressure signatures:AIAA-2005-0010[R]. Reston, VA:AIAA, 2005.