Review

Low altitude UAV traffic management:An introductory overview and proposal

  • QUAN Quan ,
  • LI Gang ,
  • BAI Yiqin ,
  • FU Rao ,
  • LI Mengxin ,
  • KE Chenxu ,
  • CAI Kaiyuan
Expand
  • 1. School of Automation Science and Electrical Engineering, Beihang Univeristy, Beijing 100083, China;
    2. Shanghai Huawei Technology Co., Ltd., Shanghai 201206, China;
    3. China Academy of Civil Aviation Science and Technology, Beijing 100028, China

Received date: 2019-06-21

  Revised date: 2019-08-20

  Online published: 2019-10-31

Supported by

National Key of Research and Development Project (2016YFC14025000)

Abstract

A large number of disorderly low-altitude UAVs may bring harm to ground facilities, public safety, piloted aerial vehicles/manned aerial vehicles, and so on. However, current air traffic management for civil aviation is not suitable for millions of UAVs in the future. In response to the challenge, new frameworks for low-altitude UAV air traffic management have been developed by many countries, which is a new thing in recent years. This paper focuses on the traffic management of low-altitude UAVs and overviews the related four aspects:the basic concept and current status quo of air traffic related to low-altitude UAV, the introduction to low-altitude UAV traffic management, the key technology of low-altitude UAV traffic management and the corresponding scientific issues of low-altitude UAV traffic management, hoping to contribute the healthy development of UAV industry.

Cite this article

QUAN Quan , LI Gang , BAI Yiqin , FU Rao , LI Mengxin , KE Chenxu , CAI Kaiyuan . Low altitude UAV traffic management:An introductory overview and proposal[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(1) : 23238 -023238 . DOI: 10.7527/S1000-6893.2019.23238

References

[1] 张军. 现代空中交通管理[M]. 北京:北京航空航天大学出版社, 2005:8-9, 269-277. ZHANG J. Modern air traffic management[M]. Beijing:Beihang University Press, 2005:8-9, 269-277(in Chinese).
[2] 陈志杰. 空域管理理论与方法[M]. 北京:科学出版社, 2012:4-9, 63-70. CHEN Z J. Theory and method of airspace management[M]. Beijing:Science Press, 2012:4-9, 63-70(in Chinese).
[3] 张建平, 陈晓, 任家龙. 民用无人机交通管理策略综述[J]. 航空计算技术, 2017, 47(6):122-128. ZHANG J P, CHEN X, REN J L. Review on civil un manned aircraft traffic management strategies[J]. Aeronautical Computing Technique, 2017, 47(6):122-128(in Chinese).
[4] 中国民用航空局.低空联网无人机安全飞行测试报告[EB/OL]. (2018-02)[2019-08-06]. http://www.caac.gov.cn/XXGK/XXGK/GFXWJ/201811/P020181127320124612083.pdf. CAAC. Safety flight test report of low-altitude networked drone[EB/OL]. (2018-02)[2019-08-06]. http://www.caac.gov.cn/XXGK/XXGK/GFXWJ/201811/P020181127320124612083.pdf (in Chinese).
[5] NASA. UTM:Air traffic management for low-altitude drones[EB/OL]. (2015-10)[2019-04-12]. https://www.nasa.gov/sites/default/files/atoms/files/utm-factsheet-11-05-15.pdf.
[6] KOPARDEKAR P, RIOS J, PREVOT T, et al. Unmanned aircraft system traffic management (UTM) concept of operations[C]//16th AIAA Aviation Technology, Integration, and Operations Conference. Reston, VA:AIAA, 2016:3292.
[7] PREVOT T, HOMOLA J, MERCER J. From rural to urban environments:Human/systems simulation research for low-altitude UAS traffic management (UTM)[C]//16th AIAA Aviation Technology, Integration, and Operations Conference. Reston, VA:AIAA, 2016:3291-3302.
[8] AWEISS A S, OWENS B D, RIOS J, et al. Unmanned aircraft systems (UAS) traffic management (UTM) national campaign II[C]//2018 AIAA Information Systems-AIAA Infotech@Aerospace. Reston, VA:AIAA, 2018:1727.
[9] MARCUS J. Unmanned aircraft systems traffic management (UTM):Conflict mitigation approach[C]//91.113(Right of Way Rules) Mitigation by Technology Workshop. McLean, VA:NASA Ames Research Center, 2018.
[10] RIOS J L, SMITH I S, VENKATESAN P, et al. UTM UAS service supplier development:Sprint 2 toward technical capability level 4[C]//91.113(Right of Way Rules) Mitigation by Technology Workshop. McLean, VA:NASA Ames Research Center, 2018.
[11] SESAR. U-space blueprint[EB/OL]. (2017-06-09)[2019-04-12].https://www.sesarju.eu/sites/default/files/documents/reports/U-Space%20Blueprint%20brochure%20final.PDF.
[12] FLORIAN G. The road to safe and secure drone integration in Europe[J]. Insight, 2018, 68:56-59.
[13] HIROYUKI U. UTM project in Japan[EB/OL]. (2017-06-26)[2019-04-12]. https://gutma.org/montreal-2017/wp-ontent/uploads/sites/2/2017/07/UTM-Project-in-Japan_METI.pdf.
[14] SALLEH M, LOW K H. Concept of operations (ConOps) for traffic management of unmanned aircraft systems (TM-UAS) in urban environment[C]//2017 AIAA Information Systems-AIAA Infotech@Aerospace. Reston, VA:AIAA, 2017:0223.
[15] SALLEH M, CHI W C, WANG Z, et al. Preliminary concept of adaptive urban airspace management for unmanned aircraft operations[C]//2018 AIAA Information Systems-AIAA Infotech@Aerospace. Reston, VA:AIAA, 2018:2260.
[16] 张进, 胡明华, 张晨. 空中交通管理中的复杂性研究[J]. 航空学报, 2009, 30(11):2132-2142. ZHANG J, HU M H, ZHANG C. Complexity research in air traffic management[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(11):2132-2142(in Chinese).
[17] 陈志杰. 未来空中交通管制系统发展面临的技术挑战[J].指挥信息系统与技术, 2016, 7(6):1-5. CHEN Z J. Technical challenges facing the development of future air traffic control systems[J]. Command Information System and Technology, 2016, 7(6):1-5(in Chinese).
[18] ROBINSON J E. Overview of unmanned aerial system traffic management (UTM)[EB/OL]. (2016-05)[2019-04-12]. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20160006684.pdf.
[19] 田凤,汤新民,李博,等. 无人机飞行计划管理系统研究[J]. 交通信息与安全, 2016, 34(4):104-111. TIAN F, TANG X M, LI B, et al. A flight management system of unmanned aerial vehicles[J]. Journal of Transport Information and Safety, 2016, 34(4):104-111(in Chinese).
[20] 中国民用航空局. 无人机云系统接口数据规范[S/OL]. (2017-07-10)[2019-04-12]. http://www.caac.gov.cn/HDJL/YJZJ/201707/P020170711601854912740.pdf. CAAC. Specification for interface data of unmanned aircraft system cloud system[S/OL]. (2017-07-10)[2019-04-12]. http://www.caac.gov.cn/HDJL/YJZJ/201707/P020170711601854912740.pdf (in Chinese).
[21] 中国民用航空局. 低空飞行服务保障体系建设总体方案[S/OL]. (2018-10-12)[2019-04-12]. www.caac.gov.cn/PHONE/HDJL/YJZJ/201807/P020180718518639740679.doc. CAAC. Overall plan for the construction of low-altitude flight service support system[S/OL]. (2018-10-12)[2019-04-12]. www.caac.gov.cn/PHONE/HDJL/YJZJ/201807/P020180718518639740679.doc (in Chinese).
[22] AMAZON. Revising the airspace model for the safe integration of small unmanned aircraft system[EB/OL]. (2015-07)[2019-04-12]. https://utm.arc.nasa.gov/docs/Amazon_Revising%20the%20Airspace%20Model%20for%20the%20Safe%20Integration%20of%20sUAS
[6].pdf.
[23] STEVENS M N, ATKINS E M. Multi-mode guidance for an independent multicopter geofencing system[C]//16th AIAA Aviation Technology, Integration, and Operations Conference. Reston, VA:AIAA, 2016:3150.
[24] DILL E T, YOUNG S D, HAYHURST K J. SAFEGUARD:An assured safety net technology for UAS[C]//2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC). Piscataway, NJ:IEEE Press, 2016.
[25] D'SOUZA S, ISHIHARA A, NIKAIDO B, et al. Feasibility of varying geo-fence around an unmanned aircraft operation based on vehicle performance and wind[C]//2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC). Piscataway, NJ:IEEE Press, 2016.
[26] 中国民用航空局. 无人机围栏(MH/T 2008-2017)[S/OL]. (2017-10-20)[2019-04-12]. http://pilot.caac.gov.cn/jsp/airmanNews/airmanNewsDetail.jsp?uuid=a070ac6b-5096-4de9-976f-000282f97036&code=UAV#down. CAAC. Fence of unmanned aircraft system (MH/T 2008-2017)[S/OL]. (2017-10-20)[2019-04-12]. http://pilot.caac.gov.cn/jsp/airmanNews/airmanNewsDetail.jsp?uuid=a070ac6b-5096-4de9-976f-000282f97036&code=UAV#down (in Chinese).
[27] 金安, 程承旗. 基于全球剖分网格的空间数据编码方法[J]. 测绘科学技术学报, 2013, 30(3):284-287. JIN A, CHENG C Q. Spatial data coding method based on global subdivision grid[J]. Journal of Geomatics Science and Technology, 2013, 30(3):284-287(in Chinese).
[28] 程承旗, 陈东, 童晓冲. 基于地球剖分网格的无人机数据组织模型初探[J]. 地理信息世界, 2015, 22(4):46-50. CHENG C Q, CHEN D, TONG X C. The UAV data organization model based on global subdivision grid[J]. Geomatics World, 2015, 22(4):46-50(in Chinese).
[29] GHARIBI M, BOUTABA R, WASLANDER S L. Internet of drones[J]. IEEE Access, 2016, 4:1148-1162.
[30] 廖小罕, 徐晨, 岳焕印. 基于地理信息的无人机低空公共航路规划研究[J]. 无人机, 2018, 2(19):45-49. LIAO X H, XU C, YUE H Y. Research on UAV low-altitude public air route planning based on geographic information[J]. Unmanned Vehicles, 2018, 2(19):45-49(in Chinese).
[31] MCFADYEN A, BRUGGEMANN T. Unmanned air traffic network design concepts[C]//2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC). Piscataway, NJ:IEEE Press, 2017.
[32] 中国民用航空局. 空域容量评估方法指导材料[S/OL].(2006-10-25)[2019-04-12]. http://www.caac.gov.cn/XXGK/XXGK/GFXWJ/201511/t20151102_8122.html. CAAC. Airspace capacity assessment method guidance[S/OL].(2017-10-20)[2019-04-12]. http://www.caac.gov.cn/XXGK/XXGK/GFXWJ/201511/t20151102_8122.html (in Chinese).
[33] BULUSU V, SENGUPTA R, MUELLER E R, et al. A throughput based capacity metric for low-altitude airspace[C]//2018 Aviation Technology, Integration, and Operations Conference. Reston, VA:AIAA, 2018.
[34] LAUDEMAN I V, SHELDEN S G, BRANSTROM R, et al. Dynamic density:An air traffic management metric:NASA/TM-1998-112226[R]. McLean, UA:NASA Ames Research Center, 1998.
[35] PUECHMOREL S, DELAHAYE D. New trends in air traffic complexity[C]//2009 ENRI International Workshop on ATM/CNS:EIWAC, 2009.
[36] HOEKSTRA J M, ELLERBOREK J, SUNIL E, et al. Geovectoring:Reducing traffic complexity to increase the capacity of UAV airspace[C]//2018 8th International Conference for Research in Air Transportation. Barcelona:ICRAT, 2018.
[37] SUNIL E, HOEKSTRA J, ELLERBREOK J, et al. Metropolis:relating airspace structure and capacity for extreme traffic densities[C]//Proceedings of the 11th USA/Europe Air Traffic Management Research and Development Seminar (ATM2015). Lisbon:FAA/EUROCONTROL, 2015.
[38] JARDIN M R. Analytical relationships between conflict counts and air-traffic density[J]. Journal of Guidance, Control and Dynamics, 2005, 28(6):1150-1156.
[39] EUROCONTROL. Air traffic management strategy for the years 2000+[EB/OL]. (2003-03-01)[2019-04-12]. https://www.seguridadaerea.gob.es/media/Migracion/pdf/89594/25524.pdf.
[40] MAJUMDAR A, OCHIENG W, POLAK J. Estimation of European airspace capacity from a model of controller workload[J]. The Journal of Navigation, 2002, 55(3):381-403.
[41] KROZEL J, MITCHELL J S B, POLISHCHUK V, et al. Maximum flow rates for capacity estimation in level flight with convective weather constraints[J]. Air Traffic Control Quarterly, 2007, 15(3):209-238.
[42] BULUSU V, POLISHCHUK V, SENGUPTA R, et al. Capacity estimation for low-altitude airspace[C]//17th AIAA Aviation Technology, Integration, and Operations Conference. Reston, VA:AIAA, 2017:4266.
[43] CHO J, YOON Y. How to assess the capacity of urban airspace:A topological approach using keep-in and keep-out geofence[J]. Transportation Research Part C:Emerging Technologies, 2018, 92:137-149.
[44] BULUSU V, SENGUPTA R, POLISHCHUK V, et al. Cooperative and non-cooperative UAS traffic volumes[C]//2017 International Conference on Unmanned Aircraft Systems (ICUAS). Piscataway, NJ:IEEE Press, 2017:1673-1681.
[45] CHO J, YOON Y. Extraction and interpretation of geometrical and topological properties of urban airspace for UAS operations[C]//13th USA/Europe Air Traffic Management Research and Development Seminar. Reston, VA:AIAA, 2019.
[46] APAZA R, MARSDEN M. CNS simulation tool development for increasingly complex airspace operation evaluation[C]//Integrated Communications, Navigation and Surveillance Conference (ICNS 2019). Herndon,VA:NASA Glenn Research Center, 2019.
[47] TEMPLIN F L, JAIN R, SHEFFIELD G, et al. Requirements for an integrated UAS CNS architecture[C]//2017 Integrated Communications, Navigation and Surveillance Conference (ICNS). Piscataway, NJ:IEEE Press, 2017:2E4-1-2E4-11.
[48] PRIMATESTA S, RIZZO A. Ground risk map for unmanned aircraft in urban environments[J]. Journal of Intelligent & Robotic Systems, doi:10.1007/s10846019-01015-Z.
[49] VASCIK P D, HANSMAN R J. Scaling constraints for urban air mobility operations:Air traffic control, ground infrastructure, and noise[C]//2018 Aviation Technology, Integration, and Operations Conference. Reston, VA:AIAA, 2018.
[50] 徐肖豪, 李善梅. 空中交通拥挤的识别与预测方法研究[J]. 航空学报, 2015, 36(8):2753-2763. XU X H, LI S M. Identification and prediction of air traffic congestion[J]. Acta Aeronauticaet Astronautica Sinica, 2015, 36(8):2753-2763(in Chinese).
[51] 胡明华,徐肖豪,陈爱民,等. 空中交通流量管理中的多元受限地面等待策略问题研究[J]. 航空学报, 1998, 19(1):78-82. HU M H, XU X H, CHEN A M, et al. Multiple unit ground holding strategy problem research in air traffic flow management[J]. Acta Aeronautica et Astronautica Sinica, 1998, 19(1):78-82(in Chinese).
[52] TERRAB M, ODONI A, DEUTSCH O. Ground-holding strategies for ATC flow control[C]//Guidance, Navigation and Control Conference. Reston, VA:AIAA, 1989:3628.
[53] VRANAS P B, BERTSIMAS D J, ODONI A R. The multi-airport ground-holding problem in air traffic control[J]. Operations Research, 1994, 42(2):249-261.
[54] VRANAS P B, BERTSIMAS D J, ODONI A R. Dynamic ground-holding policies for a network of airports[J]. Transportation Science, 1994, 28(4):275-291.
[55] ODONI A R. Flow control of congested networks[M]. Heidelberg:NATO ASI Series, 1987:269-288.
[56] SARAH S P. Dynamic flow management problems in air transportation[D]. Boston:Massachusetts Institute of Technology, 1997:55-76.
[57] DIMITRIS B. The traffic management rerouting problem in air traffic control:A dynamic network flow approach[J]. Transportation Science, 2000, 34(3):239-255.
[58] BALACHANDRAN S, NARKAWICZ A, MUNOZ C, et al. A path planning algorithm to enable well-clear low-altitude UAS operation beyond visual line of sight[C]//12th USA/Europe Air Traffic Management Research and Development Seminar (ATM2017). Seattle:ATM Seminar, 2017:16.
[59] CHAKRABARTY A, STEPANYAN V, KRISHNAKUMAR K S, et al. Real-time path planning for multicopters flying in UTM-TCL4[C]//AIAA SCITECH 2019 Forum. Reston, VA:AIAA, 2019.
[60] LIU Z, KURZHANSKIY A, SENGUPTA R. An energy-based optimal control problem for unmanned aircraft systems flight planning[C]//201756th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE). Piscataway, NJ:IEEE Press, 2017:1320-1325.
[61] LIU S, ATANASOV N, MOHTA K, et al. Search-based motion planning for quadrotors using linear quadratic minimum time control[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway, NJ:IEEE Press, 2017:2872-2879.
[62] LIU S, MOHTA K, ATANASOV N, et al. Towards search-based motion planning for micro aerial vehicles[EB/OL]. (2018-10-7)[2019-04-12]. https://arxiv.org/abs/1810.03071.
[63] TOLSTAYA E, RIBEIRO A, KUMAR V, et al. Inverse optimal planning for air traffic control[EB/OL]. (2019-03-25)[2019-04-12]. https://arxiv.org/abs/1903.10525.
[64] BALAKRISHNAN H, CHANDRAN B. A distributed framework for traffic flow management in the presence of unmanned aircraft[C]//12th USA/Europe Air Traffic Management Research and Development Seminar (ATM2017). Seattle:ATM Seminar, 2017:55.
[65] BALAKRISHNAN H, CHANDRAN B. Optimal large-scale air traffic flow management[D]. Boston:Massachusetts Institute of Technology, 2014:4-24.
[66] 付其喜, 梁晓龙, 张佳强,等. 无人机低空交通管理系统综述[J]. 飞行力学, 2019,37(2):1-6. FU Q X, LIANG X L, ZHANG J Q, et al. Overview of low-altitude air traffic management system for UAS[J]. Flight Dynamics, 2019, 37(2):1-6(in Chinese).
[67] MCFADYEN A, MEJIAS L. A survey of autonomous vision-based see and avoid for unmanned aircraft systems[J]. Progress in Aerospace Sciences, 2016, 80:1-17.
[68] KUCHAR J K, YANG L C. A review of conflict detection and resolution modeling methods[J]. IEEE Transactions on Intelligent Transportation Systems, 2000, 1(4):179-189.
[69] XUE M, RIOS J, SILVA J, et al. Fe3:An evaluation tool for low-altitude air traffic operations[C]//2018 Aviation Technology, Integration, and Operations Conference. Reston, VA:AIAA, 2018:3848.
[70] THANH H L N N, HONG S K. Completion of collision avoidance control algorithm for multicopters based on geometrical constraints[J]. IEEE Access, 2018, 6:27111-27126.
[71] ONG H Y, KOCHENDERFER M J. Markov decision process-based distributed conflict resolution for drone air traffic management[J]. Journal of Guidance, Control and Dynamics, 2016, 40(1):69-80.
[72] BALAZS B, VASARHELYI G. Coordinated dense aerial traffic with self-driving drones[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). Piscataway, NJ:IEEE Press, 2018:6365-6372.
[73] VIRAGH C, NAGY M, GERSHENSON C, et al. Self-organized UAV traffic in realistic environments[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway, NJ:IEEE Press, 2016:1645-1652.
[74] BOIVIN E, DESBIENS A, GAGNON E. UAV collision avoidance using cooperative predictive control[C]//2008 16th Mediterranean Conference on Control and Automation. Piscataway, NJ:IEEE Press, 2008.
[75] YANG X X, WEI P. Autonomous on-demand free flight operations in urban air mobility using Monte Carlo tree search[C]//2018 8th International Conference for Research in Air Transportation. Barcelona:ICRAT, 2018.
[76] RESMERITA S, HEYMANN M, MEYER G. A framework for conflict resolution in air traffic management[C]//42nd IEEE International Conference on Decision and Control. Piscataway, NJ:IEEE Press, 2003:2035-2040.
[77] RICHARDS A, HOW J P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming[C]//2002 American Control Conference. Piscataway, NJ:IEEE Press, 2002:1936-1941.
[78] ALONSO A, ESCUDERO L F, MARTIN F J. Collision avoidance in air traffic management:A mixed-integer linear optimization approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 12(1):47-57.
[79] LIN Y, SARIPALLI S. Collision avoidance for UAVs using reachable sets[C]//2015 International Conference on Unmanned Aircraft Systems (ICUAS). Piscataway, NJ:IEEE Press, 2015:226-235.
[80] PALLOTTINO L, FERON E M, BICCHI A. Conflict resolution problems for air traffic management systems solved with mixed integer programming[J]. IEEE Transactions on Intelligent Transportation Systems, 2002, 3(1):3-11.
[81] FRAZZOLI E, MAO Z H, OH J H, et al. Resolution of conflicts involving many aircraft via semidefinite programming[J]. Journal of Guidance, Control and Dynamics, 2001, 24(1):79-86.
[82] BILIMORIA K D, GRABBE S R, SHETH K S, et al. Performance evaluation of airborne separation assurance for free flight[J]. Air Traffic Control Quarterly, 2003, 11(2):85-102.
[83] YOO J D, DEVASIA S. On-demand conflict resolution procedures for air-traffic intersections[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(4):1538-1549.
[84] ZHU G, WEI P. Pre-departure planning for urban air mobility flights with dynamic airspace reservation[C]//AIAA Aviation 2019 Forum. Reston, VA:AIAA, 2019:3519.
[85] SASSO V, FOMENI F D, LULLI G, et al. Planning efficient 4D trajectories in air traffic flow management[J]. European Journal of Operational Research, 2019, 276(2):676-687.
[86] GEISTER D, KORN B. Density based management concept for urban air traffic[C]//2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC). Piscataway, NJ:IEEE Press, 2018:1-9.
[87] LOWRY M. Towards high-density urban air mobility[C]//2018 Aviation Technology, Integration, and Operations Conference. Reston, VA:AIAA, 2018:3667.
[88] KLEINBEKMAN I C, MITICI M A, WEI P. eVTOL arrival sequencing and scheduling for on-demand urban air mobility[C]//2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC). Piscataway, NJ:IEEE Press, 2018:1-7.
[89] PRADEEP P, WEI P. Energy-efficient arrival with RTA constraint for multirotor eVTOL in urban air mobility[J]. Journal of Aerospace Information Systems, 2019, 16(7):263-277.
[90] IPPOLITO C A. Dynamic ground-risk mitigating flight control for autonomous small UAS in urban environments[C]//2019 AIAA Modeling and Simulation Technologies Conference. Reston, VA:AIAA, 2109.
[91] HAYHURST K J, MADDALON J M, MINER P S, et al. Preliminary considerations for classifying hazards of unmanned aircraft systems[R]. Hampton:NASA Langley Research Center, 2007.
[92] CLOTHIER R A, WALKER R A. Determination and evaluation of UAV safety objectives[C]//21st International Unmanned Air Vehicle Systems Conference. Bristol:QUT Faculty of Built Environment and Engineering, 2006.
[93] CLOTHIER R A, PALMER J L, WALKER R A, et al. Definition of an airworthiness certification framework for civil unmanned aircraft systems[J]. Safety Science, 2011, 49(6):871-885.
[94] BURKE D A, HALL C E, COOK S P. System-level airworthiness tool[J]. Journal of Aircraft, 2011, 48(3):777-785.
[95] 丁水汀,鲍梦瑶,杜发荣. 无人机系统适航与安全性分析方法[J]. 航空动力学报, 2012, 27(1):233-240. DING S T, BAO M Y, DU F R. Safety research on unmanned aircraft system for airworthiness[J]. Journal of Aerospace Power, 2012, 27(1):233-240(in Chinese).
[96] JARUS. JARUS guidelines on specific operations risk assessment (SORA)[EB/OL]. (2017-06-26)[2019-04-12]. http://jarus-rpas.org/sites/jarus-rpas.org/files/jar_doc_06_jarus_sora_v2.0.pdf.
[97] 中国民用航空局. 特定类无人机试运行管理规程(暂行)[S/OL]. (2019-02-01)[2019-04-12]. http://www.caac.gov.cn/XXGK/XXGK/GFXWJ/201902/P020190201603949196944.pdf. CAAC. Procedures for the trial operation of certain types of UAVs (provisional)[S/OL]. (2019-02-01)[2019-04-12]. http://www.caac.gov.cn/XXGK/XXGK/GFXWJ/201902/P020190201603949196944.pdf (in Chinese).
[98] AIRBUS. Altiscope:Building blueprints for the sky[EB/OL]. (2017-11)[2019-4-12]. https://www.airbus.com/newsroom/news/en/2017/11/altiscope-building-blueprints-for-the-sky.html
[99] DALAMAGKIDIS K. Handbook of unmanned aerial vehicles[M]. Dordrecht:Springer, 2015:2199-2228.
[100] CASA. Human injury model for small unmanned aircraft impacts[EB/OL]. (2013-12)[2019-04-12]. https://www.casa.gov.au/sites/g/files/net351/f/_assets/main/airworth/papers/human-injury-model-small-unmanned-aircraft-impacts.pdf.
[101] ENDOH S. Aircraft collision models[D]. Boston:Massachusetts Institute of Technology, 1982:7-13.
[102] KIM S H. Conflict risk assessment of structured and unstructured traffic of small unmanned aircraft systems[C]//2018 Aviation Technology, Integration, and Operations Conference. Reston, VA:AIAA, 2018:3033.
[103] PRANDINI M, HU J, LYGEROS J, et al. A probabilistic approach to aircraft conflict detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2000, 1(4):199-220.
[104] JONES T. Tractable conflict risk accumulation in quadratic space for autonomous vehicles[J]. Journal of Guidance, Control and Dynamics, 2006, 29(1):39-48.
[105] PATIL S, VAN DEN BERG J, ALTEROVITZ R. Estimating probability of collision for safe motion planning under Gaussian motion and sensing uncertainty[C]//2012 IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE Press, 2012:3238-3244.
[106] BLACKMORE L, LI H, WILLIAMS B. A probabilistic approach to optimal robust path planning with obstacles[C]//2006 American Control Conference. Piscataway, NJ:IEEE Press, 2006:9047084.
[107] JONES B A, DOOSTAN A. Satellite collision probability estimation using polynomial chaos expansions[J]. Advances in Space Research, 2013, 52(11):1860-1875.
[108] JONES B A, PARRISH N, DOOSTAN A. Post maneuver collision probability estimation using sparse polynomial chaos expansions[J]. Journal of Guidance, Control and Dynamics, 2015, 38(8):1425-1437.
[109] XIU D, KARNIADAKIS G E. The Wiener-Askey polynomial chaos for stochastic differential equations[J]. SIAM Journal on Scientific Computing, 2002, 24(2):619-644.
[110] PAIELLI R A, ERZBERGER H. Conflict probability estimation for free flight[J]. Journal of Guidance, Control and Dynamics, 1997, 20(3):588-596.
[111] ANCEL E, CAPRISTAN F M, FOSTER J V, et al. Real-time risk assessment framework for unmanned aircraft system (UAS) traffic management (UTM)[C]//17th AIAA Aviation Technology, Integration, and Operations Conference. Reston, VA:AIAA, 2017.
[112] ZHAO Z Y, QUAN Q, CAI K Y. A health evaluation method of multicopters modeled by stochastic hybrid system[J]. Aerospace Science and Technology, 2017, 68:149-162.
[113] ZHAO Z Y, QUAN Q, CAI K Y. A profust reliability based approach to prognostics and health management[J]. IEEE Transactions on Reliability, 2014, 63(1):26-41.
[114] YAN J, ZHAO Z Y, LIU H X, et al. Fault detection and identification for quadrotor based on airframe vibration signals:a data-driven method[C]//2015 34th Chinese Control Conference (CCC). Piscataway, NJ:IEEE Press, 2015:6356-6361.
[115] GRAVIO G, MANCINI M, PATRIARCA R, et al. Overall safety performance of air traffic management system:Forecasting and monitoring[J]. Safety Science, 2015, 72:351-362.
[116] SACHATNY D, HENDERSON T C. A lane-based approach for large-scale strategic conflict management for UAS service suppliers[C]//2019 International Conference on Unmanned Aircraft Systems (ICUAS). Piscataway, NJ:IEEE Press, 2019:937-945.
[117] GHARIBI M, BOUTABA R, WASLANDER S. 3D traffic flow model for UAVs[J/OL]. eprint arXiv:1810.03071, (2019-9-11)[2019-10-11]. https://arxiv.org/abs/1909.04838.
[118] CONTE G, DOHERTY P. Vision-based unmanned aerial vehicle navigation using geo-referenced information[J]. EURASIP Journal on Advances in Signal Processing, 2009, 10:1-18.
[119] ALI B S. Traffic management for drones flying in the city[J]. International Journal of Critical Infrastructure Protection, 2019, 26:100310.
[120] JUNG J, D'SOUZA S N, JOHNSON M A, et al. Applying required navigation performance concept for traffic management of small unmanned aircraft systems[C]//30th ICAS 2016 Congress of the International Council of the Aeronautics Sciences. Mclean, VA:NASA Ames Research Center, 2016,9.
[121] ICAO. Manual on required communication performance(RCP)[S]. Montreal:International Civil Aviation Organization, 2006.
[122] KOPARDEKAR P, RIOS J, JOHNSON M, et al. Unmanned aerial systems traffic management (UTM) weather impacts[C]//6th Unmanned Systems Alliance of Oklahoma. Mclean, VA:NASA Ames Research Center, 2016.
[123] PIEN K C, HAN K, SHANG W, et al. Robustness analysis of the European air traffic network[J]. Transportmetrica A:Transport Science, 2015, 11(9):772-792.
[124] WACKWITZ K, BOEDECKER H. Safety risk assessment for UAV operation[EB/OL]. (2015-11)[2019-11-01]. http://www.sarahnilsson.org/app/download/965208764/Safety-Risk-Assessment-for-UAV-Operation-Rev.-1.1.compressed.pdf.
[125] ANSI. Standardization roadmap for unmanned aircraft systems[EB/OL]. (2018-12-20)[2019-04-12].https://www.ansi.org/news_publications/news_story?menuid=7&articleid=58757077-aeb7-4554-b359-4aa34ae8881d.
[126] MATUS F, HEDBLOM B. Addressing the low-altitude airspace integration challenge-USS or UTM core?[C]//2018 Integrated Communications, Navigation, Surveillance Conference (ICNS). Piscataway, NJ:IEEE Press, 2018.
[127] HASSANALIAN M, ABDELKEFI A. Classifications, applications, and design challenges of drones:A review[J]. Progress in Aerospace Sciences, 2017, 91:99-131.
[128] SILVA C, JOHNSON W R, SOLIS E, et al. VTOL urban air mobility concept vehicles for technology development[C]//2018 Aviation Technology, Integration, and Operations Conference. Reston, VA:AIAA, 2018:3847.
[129] JEANNIN J. Security aspects of urban air mobility[EB/OL].[2019-04-12]. https://cra.org/ccc/wp-content/uploads/sites/2/2018/06/JeanBoris_ccc_leadership_in_embedded_security_workshop.pdf.
Outlines

/