[1] 张军. 现代空中交通管理[M]. 北京:北京航空航天大学出版社, 2005:8-9, 269-277. ZHANG J. Modern air traffic management[M]. Beijing:Beihang University Press, 2005:8-9, 269-277(in Chinese).
[2] 陈志杰. 空域管理理论与方法[M]. 北京:科学出版社, 2012:4-9, 63-70. CHEN Z J. Theory and method of airspace management[M]. Beijing:Science Press, 2012:4-9, 63-70(in Chinese).
[3] 张建平, 陈晓, 任家龙. 民用无人机交通管理策略综述[J]. 航空计算技术, 2017, 47(6):122-128. ZHANG J P, CHEN X, REN J L. Review on civil un manned aircraft traffic management strategies[J]. Aeronautical Computing Technique, 2017, 47(6):122-128(in Chinese).
[4] 中国民用航空局.低空联网无人机安全飞行测试报告[EB/OL]. (2018-02)[2019-08-06]. http://www.caac.gov.cn/XXGK/XXGK/GFXWJ/201811/P020181127320124612083.pdf. CAAC. Safety flight test report of low-altitude networked drone[EB/OL]. (2018-02)[2019-08-06]. http://www.caac.gov.cn/XXGK/XXGK/GFXWJ/201811/P020181127320124612083.pdf (in Chinese).
[5] NASA. UTM:Air traffic management for low-altitude drones[EB/OL]. (2015-10)[2019-04-12]. https://www.nasa.gov/sites/default/files/atoms/files/utm-factsheet-11-05-15.pdf.
[6] KOPARDEKAR P, RIOS J, PREVOT T, et al. Unmanned aircraft system traffic management (UTM) concept of operations[C]//16th AIAA Aviation Technology, Integration, and Operations Conference. Reston, VA:AIAA, 2016:3292.
[7] PREVOT T, HOMOLA J, MERCER J. From rural to urban environments:Human/systems simulation research for low-altitude UAS traffic management (UTM)[C]//16th AIAA Aviation Technology, Integration, and Operations Conference. Reston, VA:AIAA, 2016:3291-3302.
[8] AWEISS A S, OWENS B D, RIOS J, et al. Unmanned aircraft systems (UAS) traffic management (UTM) national campaign II[C]//2018 AIAA Information Systems-AIAA Infotech@Aerospace. Reston, VA:AIAA, 2018:1727.
[9] MARCUS J. Unmanned aircraft systems traffic management (UTM):Conflict mitigation approach[C]//91.113(Right of Way Rules) Mitigation by Technology Workshop. McLean, VA:NASA Ames Research Center, 2018.
[10] RIOS J L, SMITH I S, VENKATESAN P, et al. UTM UAS service supplier development:Sprint 2 toward technical capability level 4[C]//91.113(Right of Way Rules) Mitigation by Technology Workshop. McLean, VA:NASA Ames Research Center, 2018.
[11] SESAR. U-space blueprint[EB/OL]. (2017-06-09)[2019-04-12].https://www.sesarju.eu/sites/default/files/documents/reports/U-Space%20Blueprint%20brochure%20final.PDF.
[12] FLORIAN G. The road to safe and secure drone integration in Europe[J]. Insight, 2018, 68:56-59.
[13] HIROYUKI U. UTM project in Japan[EB/OL]. (2017-06-26)[2019-04-12]. https://gutma.org/montreal-2017/wp-ontent/uploads/sites/2/2017/07/UTM-Project-in-Japan_METI.pdf.
[14] SALLEH M, LOW K H. Concept of operations (ConOps) for traffic management of unmanned aircraft systems (TM-UAS) in urban environment[C]//2017 AIAA Information Systems-AIAA Infotech@Aerospace. Reston, VA:AIAA, 2017:0223.
[15] SALLEH M, CHI W C, WANG Z, et al. Preliminary concept of adaptive urban airspace management for unmanned aircraft operations[C]//2018 AIAA Information Systems-AIAA Infotech@Aerospace. Reston, VA:AIAA, 2018:2260.
[16] 张进, 胡明华, 张晨. 空中交通管理中的复杂性研究[J]. 航空学报, 2009, 30(11):2132-2142. ZHANG J, HU M H, ZHANG C. Complexity research in air traffic management[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(11):2132-2142(in Chinese).
[17] 陈志杰. 未来空中交通管制系统发展面临的技术挑战[J].指挥信息系统与技术, 2016, 7(6):1-5. CHEN Z J. Technical challenges facing the development of future air traffic control systems[J]. Command Information System and Technology, 2016, 7(6):1-5(in Chinese).
[18] ROBINSON J E. Overview of unmanned aerial system traffic management (UTM)[EB/OL]. (2016-05)[2019-04-12]. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20160006684.pdf.
[19] 田凤,汤新民,李博,等. 无人机飞行计划管理系统研究[J]. 交通信息与安全, 2016, 34(4):104-111. TIAN F, TANG X M, LI B, et al. A flight management system of unmanned aerial vehicles[J]. Journal of Transport Information and Safety, 2016, 34(4):104-111(in Chinese).
[20] 中国民用航空局. 无人机云系统接口数据规范[S/OL]. (2017-07-10)[2019-04-12]. http://www.caac.gov.cn/HDJL/YJZJ/201707/P020170711601854912740.pdf. CAAC. Specification for interface data of unmanned aircraft system cloud system[S/OL]. (2017-07-10)[2019-04-12]. http://www.caac.gov.cn/HDJL/YJZJ/201707/P020170711601854912740.pdf (in Chinese).
[21] 中国民用航空局. 低空飞行服务保障体系建设总体方案[S/OL]. (2018-10-12)[2019-04-12]. www.caac.gov.cn/PHONE/HDJL/YJZJ/201807/P020180718518639740679.doc. CAAC. Overall plan for the construction of low-altitude flight service support system[S/OL]. (2018-10-12)[2019-04-12]. www.caac.gov.cn/PHONE/HDJL/YJZJ/201807/P020180718518639740679.doc (in Chinese).
[22] AMAZON. Revising the airspace model for the safe integration of small unmanned aircraft system[EB/OL]. (2015-07)[2019-04-12]. https://utm.arc.nasa.gov/docs/Amazon_Revising%20the%20Airspace%20Model%20for%20the%20Safe%20Integration%20of%20sUAS
[6].pdf.
[23] STEVENS M N, ATKINS E M. Multi-mode guidance for an independent multicopter geofencing system[C]//16th AIAA Aviation Technology, Integration, and Operations Conference. Reston, VA:AIAA, 2016:3150.
[24] DILL E T, YOUNG S D, HAYHURST K J. SAFEGUARD:An assured safety net technology for UAS[C]//2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC). Piscataway, NJ:IEEE Press, 2016.
[25] D'SOUZA S, ISHIHARA A, NIKAIDO B, et al. Feasibility of varying geo-fence around an unmanned aircraft operation based on vehicle performance and wind[C]//2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC). Piscataway, NJ:IEEE Press, 2016.
[26] 中国民用航空局. 无人机围栏(MH/T 2008-2017)[S/OL]. (2017-10-20)[2019-04-12]. http://pilot.caac.gov.cn/jsp/airmanNews/airmanNewsDetail.jsp?uuid=a070ac6b-5096-4de9-976f-000282f97036&code=UAV#down. CAAC. Fence of unmanned aircraft system (MH/T 2008-2017)[S/OL]. (2017-10-20)[2019-04-12]. http://pilot.caac.gov.cn/jsp/airmanNews/airmanNewsDetail.jsp?uuid=a070ac6b-5096-4de9-976f-000282f97036&code=UAV#down (in Chinese).
[27] 金安, 程承旗. 基于全球剖分网格的空间数据编码方法[J]. 测绘科学技术学报, 2013, 30(3):284-287. JIN A, CHENG C Q. Spatial data coding method based on global subdivision grid[J]. Journal of Geomatics Science and Technology, 2013, 30(3):284-287(in Chinese).
[28] 程承旗, 陈东, 童晓冲. 基于地球剖分网格的无人机数据组织模型初探[J]. 地理信息世界, 2015, 22(4):46-50. CHENG C Q, CHEN D, TONG X C. The UAV data organization model based on global subdivision grid[J]. Geomatics World, 2015, 22(4):46-50(in Chinese).
[29] GHARIBI M, BOUTABA R, WASLANDER S L. Internet of drones[J]. IEEE Access, 2016, 4:1148-1162.
[30] 廖小罕, 徐晨, 岳焕印. 基于地理信息的无人机低空公共航路规划研究[J]. 无人机, 2018, 2(19):45-49. LIAO X H, XU C, YUE H Y. Research on UAV low-altitude public air route planning based on geographic information[J]. Unmanned Vehicles, 2018, 2(19):45-49(in Chinese).
[31] MCFADYEN A, BRUGGEMANN T. Unmanned air traffic network design concepts[C]//2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC). Piscataway, NJ:IEEE Press, 2017.
[32] 中国民用航空局. 空域容量评估方法指导材料[S/OL].(2006-10-25)[2019-04-12]. http://www.caac.gov.cn/XXGK/XXGK/GFXWJ/201511/t20151102_8122.html. CAAC. Airspace capacity assessment method guidance[S/OL].(2017-10-20)[2019-04-12]. http://www.caac.gov.cn/XXGK/XXGK/GFXWJ/201511/t20151102_8122.html (in Chinese).
[33] BULUSU V, SENGUPTA R, MUELLER E R, et al. A throughput based capacity metric for low-altitude airspace[C]//2018 Aviation Technology, Integration, and Operations Conference. Reston, VA:AIAA, 2018.
[34] LAUDEMAN I V, SHELDEN S G, BRANSTROM R, et al. Dynamic density:An air traffic management metric:NASA/TM-1998-112226[R]. McLean, UA:NASA Ames Research Center, 1998.
[35] PUECHMOREL S, DELAHAYE D. New trends in air traffic complexity[C]//2009 ENRI International Workshop on ATM/CNS:EIWAC, 2009.
[36] HOEKSTRA J M, ELLERBOREK J, SUNIL E, et al. Geovectoring:Reducing traffic complexity to increase the capacity of UAV airspace[C]//2018 8th International Conference for Research in Air Transportation. Barcelona:ICRAT, 2018.
[37] SUNIL E, HOEKSTRA J, ELLERBREOK J, et al. Metropolis:relating airspace structure and capacity for extreme traffic densities[C]//Proceedings of the 11th USA/Europe Air Traffic Management Research and Development Seminar (ATM2015). Lisbon:FAA/EUROCONTROL, 2015.
[38] JARDIN M R. Analytical relationships between conflict counts and air-traffic density[J]. Journal of Guidance, Control and Dynamics, 2005, 28(6):1150-1156.
[39] EUROCONTROL. Air traffic management strategy for the years 2000+[EB/OL]. (2003-03-01)[2019-04-12]. https://www.seguridadaerea.gob.es/media/Migracion/pdf/89594/25524.pdf.
[40] MAJUMDAR A, OCHIENG W, POLAK J. Estimation of European airspace capacity from a model of controller workload[J]. The Journal of Navigation, 2002, 55(3):381-403.
[41] KROZEL J, MITCHELL J S B, POLISHCHUK V, et al. Maximum flow rates for capacity estimation in level flight with convective weather constraints[J]. Air Traffic Control Quarterly, 2007, 15(3):209-238.
[42] BULUSU V, POLISHCHUK V, SENGUPTA R, et al. Capacity estimation for low-altitude airspace[C]//17th AIAA Aviation Technology, Integration, and Operations Conference. Reston, VA:AIAA, 2017:4266.
[43] CHO J, YOON Y. How to assess the capacity of urban airspace:A topological approach using keep-in and keep-out geofence[J]. Transportation Research Part C:Emerging Technologies, 2018, 92:137-149.
[44] BULUSU V, SENGUPTA R, POLISHCHUK V, et al. Cooperative and non-cooperative UAS traffic volumes[C]//2017 International Conference on Unmanned Aircraft Systems (ICUAS). Piscataway, NJ:IEEE Press, 2017:1673-1681.
[45] CHO J, YOON Y. Extraction and interpretation of geometrical and topological properties of urban airspace for UAS operations[C]//13th USA/Europe Air Traffic Management Research and Development Seminar. Reston, VA:AIAA, 2019.
[46] APAZA R, MARSDEN M. CNS simulation tool development for increasingly complex airspace operation evaluation[C]//Integrated Communications, Navigation and Surveillance Conference (ICNS 2019). Herndon,VA:NASA Glenn Research Center, 2019.
[47] TEMPLIN F L, JAIN R, SHEFFIELD G, et al. Requirements for an integrated UAS CNS architecture[C]//2017 Integrated Communications, Navigation and Surveillance Conference (ICNS). Piscataway, NJ:IEEE Press, 2017:2E4-1-2E4-11.
[48] PRIMATESTA S, RIZZO A. Ground risk map for unmanned aircraft in urban environments[J]. Journal of Intelligent & Robotic Systems, doi:10.1007/s10846019-01015-Z.
[49] VASCIK P D, HANSMAN R J. Scaling constraints for urban air mobility operations:Air traffic control, ground infrastructure, and noise[C]//2018 Aviation Technology, Integration, and Operations Conference. Reston, VA:AIAA, 2018.
[50] 徐肖豪, 李善梅. 空中交通拥挤的识别与预测方法研究[J]. 航空学报, 2015, 36(8):2753-2763. XU X H, LI S M. Identification and prediction of air traffic congestion[J]. Acta Aeronauticaet Astronautica Sinica, 2015, 36(8):2753-2763(in Chinese).
[51] 胡明华,徐肖豪,陈爱民,等. 空中交通流量管理中的多元受限地面等待策略问题研究[J]. 航空学报, 1998, 19(1):78-82. HU M H, XU X H, CHEN A M, et al. Multiple unit ground holding strategy problem research in air traffic flow management[J]. Acta Aeronautica et Astronautica Sinica, 1998, 19(1):78-82(in Chinese).
[52] TERRAB M, ODONI A, DEUTSCH O. Ground-holding strategies for ATC flow control[C]//Guidance, Navigation and Control Conference. Reston, VA:AIAA, 1989:3628.
[53] VRANAS P B, BERTSIMAS D J, ODONI A R. The multi-airport ground-holding problem in air traffic control[J]. Operations Research, 1994, 42(2):249-261.
[54] VRANAS P B, BERTSIMAS D J, ODONI A R. Dynamic ground-holding policies for a network of airports[J]. Transportation Science, 1994, 28(4):275-291.
[55] ODONI A R. Flow control of congested networks[M]. Heidelberg:NATO ASI Series, 1987:269-288.
[56] SARAH S P. Dynamic flow management problems in air transportation[D]. Boston:Massachusetts Institute of Technology, 1997:55-76.
[57] DIMITRIS B. The traffic management rerouting problem in air traffic control:A dynamic network flow approach[J]. Transportation Science, 2000, 34(3):239-255.
[58] BALACHANDRAN S, NARKAWICZ A, MUNOZ C, et al. A path planning algorithm to enable well-clear low-altitude UAS operation beyond visual line of sight[C]//12th USA/Europe Air Traffic Management Research and Development Seminar (ATM2017). Seattle:ATM Seminar, 2017:16.
[59] CHAKRABARTY A, STEPANYAN V, KRISHNAKUMAR K S, et al. Real-time path planning for multicopters flying in UTM-TCL4[C]//AIAA SCITECH 2019 Forum. Reston, VA:AIAA, 2019.
[60] LIU Z, KURZHANSKIY A, SENGUPTA R. An energy-based optimal control problem for unmanned aircraft systems flight planning[C]//201756th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE). Piscataway, NJ:IEEE Press, 2017:1320-1325.
[61] LIU S, ATANASOV N, MOHTA K, et al. Search-based motion planning for quadrotors using linear quadratic minimum time control[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway, NJ:IEEE Press, 2017:2872-2879.
[62] LIU S, MOHTA K, ATANASOV N, et al. Towards search-based motion planning for micro aerial vehicles[EB/OL]. (2018-10-7)[2019-04-12]. https://arxiv.org/abs/1810.03071.
[63] TOLSTAYA E, RIBEIRO A, KUMAR V, et al. Inverse optimal planning for air traffic control[EB/OL]. (2019-03-25)[2019-04-12]. https://arxiv.org/abs/1903.10525.
[64] BALAKRISHNAN H, CHANDRAN B. A distributed framework for traffic flow management in the presence of unmanned aircraft[C]//12th USA/Europe Air Traffic Management Research and Development Seminar (ATM2017). Seattle:ATM Seminar, 2017:55.
[65] BALAKRISHNAN H, CHANDRAN B. Optimal large-scale air traffic flow management[D]. Boston:Massachusetts Institute of Technology, 2014:4-24.
[66] 付其喜, 梁晓龙, 张佳强,等. 无人机低空交通管理系统综述[J]. 飞行力学, 2019,37(2):1-6. FU Q X, LIANG X L, ZHANG J Q, et al. Overview of low-altitude air traffic management system for UAS[J]. Flight Dynamics, 2019, 37(2):1-6(in Chinese).
[67] MCFADYEN A, MEJIAS L. A survey of autonomous vision-based see and avoid for unmanned aircraft systems[J]. Progress in Aerospace Sciences, 2016, 80:1-17.
[68] KUCHAR J K, YANG L C. A review of conflict detection and resolution modeling methods[J]. IEEE Transactions on Intelligent Transportation Systems, 2000, 1(4):179-189.
[69] XUE M, RIOS J, SILVA J, et al. Fe3:An evaluation tool for low-altitude air traffic operations[C]//2018 Aviation Technology, Integration, and Operations Conference. Reston, VA:AIAA, 2018:3848.
[70] THANH H L N N, HONG S K. Completion of collision avoidance control algorithm for multicopters based on geometrical constraints[J]. IEEE Access, 2018, 6:27111-27126.
[71] ONG H Y, KOCHENDERFER M J. Markov decision process-based distributed conflict resolution for drone air traffic management[J]. Journal of Guidance, Control and Dynamics, 2016, 40(1):69-80.
[72] BALAZS B, VASARHELYI G. Coordinated dense aerial traffic with self-driving drones[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). Piscataway, NJ:IEEE Press, 2018:6365-6372.
[73] VIRAGH C, NAGY M, GERSHENSON C, et al. Self-organized UAV traffic in realistic environments[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway, NJ:IEEE Press, 2016:1645-1652.
[74] BOIVIN E, DESBIENS A, GAGNON E. UAV collision avoidance using cooperative predictive control[C]//2008 16th Mediterranean Conference on Control and Automation. Piscataway, NJ:IEEE Press, 2008.
[75] YANG X X, WEI P. Autonomous on-demand free flight operations in urban air mobility using Monte Carlo tree search[C]//2018 8th International Conference for Research in Air Transportation. Barcelona:ICRAT, 2018.
[76] RESMERITA S, HEYMANN M, MEYER G. A framework for conflict resolution in air traffic management[C]//42nd IEEE International Conference on Decision and Control. Piscataway, NJ:IEEE Press, 2003:2035-2040.
[77] RICHARDS A, HOW J P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming[C]//2002 American Control Conference. Piscataway, NJ:IEEE Press, 2002:1936-1941.
[78] ALONSO A, ESCUDERO L F, MARTIN F J. Collision avoidance in air traffic management:A mixed-integer linear optimization approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 12(1):47-57.
[79] LIN Y, SARIPALLI S. Collision avoidance for UAVs using reachable sets[C]//2015 International Conference on Unmanned Aircraft Systems (ICUAS). Piscataway, NJ:IEEE Press, 2015:226-235.
[80] PALLOTTINO L, FERON E M, BICCHI A. Conflict resolution problems for air traffic management systems solved with mixed integer programming[J]. IEEE Transactions on Intelligent Transportation Systems, 2002, 3(1):3-11.
[81] FRAZZOLI E, MAO Z H, OH J H, et al. Resolution of conflicts involving many aircraft via semidefinite programming[J]. Journal of Guidance, Control and Dynamics, 2001, 24(1):79-86.
[82] BILIMORIA K D, GRABBE S R, SHETH K S, et al. Performance evaluation of airborne separation assurance for free flight[J]. Air Traffic Control Quarterly, 2003, 11(2):85-102.
[83] YOO J D, DEVASIA S. On-demand conflict resolution procedures for air-traffic intersections[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(4):1538-1549.
[84] ZHU G, WEI P. Pre-departure planning for urban air mobility flights with dynamic airspace reservation[C]//AIAA Aviation 2019 Forum. Reston, VA:AIAA, 2019:3519.
[85] SASSO V, FOMENI F D, LULLI G, et al. Planning efficient 4D trajectories in air traffic flow management[J]. European Journal of Operational Research, 2019, 276(2):676-687.
[86] GEISTER D, KORN B. Density based management concept for urban air traffic[C]//2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC). Piscataway, NJ:IEEE Press, 2018:1-9.
[87] LOWRY M. Towards high-density urban air mobility[C]//2018 Aviation Technology, Integration, and Operations Conference. Reston, VA:AIAA, 2018:3667.
[88] KLEINBEKMAN I C, MITICI M A, WEI P. eVTOL arrival sequencing and scheduling for on-demand urban air mobility[C]//2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC). Piscataway, NJ:IEEE Press, 2018:1-7.
[89] PRADEEP P, WEI P. Energy-efficient arrival with RTA constraint for multirotor eVTOL in urban air mobility[J]. Journal of Aerospace Information Systems, 2019, 16(7):263-277.
[90] IPPOLITO C A. Dynamic ground-risk mitigating flight control for autonomous small UAS in urban environments[C]//2019 AIAA Modeling and Simulation Technologies Conference. Reston, VA:AIAA, 2109.
[91] HAYHURST K J, MADDALON J M, MINER P S, et al. Preliminary considerations for classifying hazards of unmanned aircraft systems[R]. Hampton:NASA Langley Research Center, 2007.
[92] CLOTHIER R A, WALKER R A. Determination and evaluation of UAV safety objectives[C]//21st International Unmanned Air Vehicle Systems Conference. Bristol:QUT Faculty of Built Environment and Engineering, 2006.
[93] CLOTHIER R A, PALMER J L, WALKER R A, et al. Definition of an airworthiness certification framework for civil unmanned aircraft systems[J]. Safety Science, 2011, 49(6):871-885.
[94] BURKE D A, HALL C E, COOK S P. System-level airworthiness tool[J]. Journal of Aircraft, 2011, 48(3):777-785.
[95] 丁水汀,鲍梦瑶,杜发荣. 无人机系统适航与安全性分析方法[J]. 航空动力学报, 2012, 27(1):233-240. DING S T, BAO M Y, DU F R. Safety research on unmanned aircraft system for airworthiness[J]. Journal of Aerospace Power, 2012, 27(1):233-240(in Chinese).
[96] JARUS. JARUS guidelines on specific operations risk assessment (SORA)[EB/OL]. (2017-06-26)[2019-04-12]. http://jarus-rpas.org/sites/jarus-rpas.org/files/jar_doc_06_jarus_sora_v2.0.pdf.
[97] 中国民用航空局. 特定类无人机试运行管理规程(暂行)[S/OL]. (2019-02-01)[2019-04-12]. http://www.caac.gov.cn/XXGK/XXGK/GFXWJ/201902/P020190201603949196944.pdf. CAAC. Procedures for the trial operation of certain types of UAVs (provisional)[S/OL]. (2019-02-01)[2019-04-12]. http://www.caac.gov.cn/XXGK/XXGK/GFXWJ/201902/P020190201603949196944.pdf (in Chinese).
[98] AIRBUS. Altiscope:Building blueprints for the sky[EB/OL]. (2017-11)[2019-4-12]. https://www.airbus.com/newsroom/news/en/2017/11/altiscope-building-blueprints-for-the-sky.html
[99] DALAMAGKIDIS K. Handbook of unmanned aerial vehicles[M]. Dordrecht:Springer, 2015:2199-2228.
[100] CASA. Human injury model for small unmanned aircraft impacts[EB/OL]. (2013-12)[2019-04-12]. https://www.casa.gov.au/sites/g/files/net351/f/_assets/main/airworth/papers/human-injury-model-small-unmanned-aircraft-impacts.pdf.
[101] ENDOH S. Aircraft collision models[D]. Boston:Massachusetts Institute of Technology, 1982:7-13.
[102] KIM S H. Conflict risk assessment of structured and unstructured traffic of small unmanned aircraft systems[C]//2018 Aviation Technology, Integration, and Operations Conference. Reston, VA:AIAA, 2018:3033.
[103] PRANDINI M, HU J, LYGEROS J, et al. A probabilistic approach to aircraft conflict detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2000, 1(4):199-220.
[104] JONES T. Tractable conflict risk accumulation in quadratic space for autonomous vehicles[J]. Journal of Guidance, Control and Dynamics, 2006, 29(1):39-48.
[105] PATIL S, VAN DEN BERG J, ALTEROVITZ R. Estimating probability of collision for safe motion planning under Gaussian motion and sensing uncertainty[C]//2012 IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE Press, 2012:3238-3244.
[106] BLACKMORE L, LI H, WILLIAMS B. A probabilistic approach to optimal robust path planning with obstacles[C]//2006 American Control Conference. Piscataway, NJ:IEEE Press, 2006:9047084.
[107] JONES B A, DOOSTAN A. Satellite collision probability estimation using polynomial chaos expansions[J]. Advances in Space Research, 2013, 52(11):1860-1875.
[108] JONES B A, PARRISH N, DOOSTAN A. Post maneuver collision probability estimation using sparse polynomial chaos expansions[J]. Journal of Guidance, Control and Dynamics, 2015, 38(8):1425-1437.
[109] XIU D, KARNIADAKIS G E. The Wiener-Askey polynomial chaos for stochastic differential equations[J]. SIAM Journal on Scientific Computing, 2002, 24(2):619-644.
[110] PAIELLI R A, ERZBERGER H. Conflict probability estimation for free flight[J]. Journal of Guidance, Control and Dynamics, 1997, 20(3):588-596.
[111] ANCEL E, CAPRISTAN F M, FOSTER J V, et al. Real-time risk assessment framework for unmanned aircraft system (UAS) traffic management (UTM)[C]//17th AIAA Aviation Technology, Integration, and Operations Conference. Reston, VA:AIAA, 2017.
[112] ZHAO Z Y, QUAN Q, CAI K Y. A health evaluation method of multicopters modeled by stochastic hybrid system[J]. Aerospace Science and Technology, 2017, 68:149-162.
[113] ZHAO Z Y, QUAN Q, CAI K Y. A profust reliability based approach to prognostics and health management[J]. IEEE Transactions on Reliability, 2014, 63(1):26-41.
[114] YAN J, ZHAO Z Y, LIU H X, et al. Fault detection and identification for quadrotor based on airframe vibration signals:a data-driven method[C]//2015 34th Chinese Control Conference (CCC). Piscataway, NJ:IEEE Press, 2015:6356-6361.
[115] GRAVIO G, MANCINI M, PATRIARCA R, et al. Overall safety performance of air traffic management system:Forecasting and monitoring[J]. Safety Science, 2015, 72:351-362.
[116] SACHATNY D, HENDERSON T C. A lane-based approach for large-scale strategic conflict management for UAS service suppliers[C]//2019 International Conference on Unmanned Aircraft Systems (ICUAS). Piscataway, NJ:IEEE Press, 2019:937-945.
[117] GHARIBI M, BOUTABA R, WASLANDER S. 3D traffic flow model for UAVs[J/OL]. eprint arXiv:1810.03071, (2019-9-11)[2019-10-11]. https://arxiv.org/abs/1909.04838.
[118] CONTE G, DOHERTY P. Vision-based unmanned aerial vehicle navigation using geo-referenced information[J]. EURASIP Journal on Advances in Signal Processing, 2009, 10:1-18.
[119] ALI B S. Traffic management for drones flying in the city[J]. International Journal of Critical Infrastructure Protection, 2019, 26:100310.
[120] JUNG J, D'SOUZA S N, JOHNSON M A, et al. Applying required navigation performance concept for traffic management of small unmanned aircraft systems[C]//30th ICAS 2016 Congress of the International Council of the Aeronautics Sciences. Mclean, VA:NASA Ames Research Center, 2016,9.
[121] ICAO. Manual on required communication performance(RCP)[S]. Montreal:International Civil Aviation Organization, 2006.
[122] KOPARDEKAR P, RIOS J, JOHNSON M, et al. Unmanned aerial systems traffic management (UTM) weather impacts[C]//6th Unmanned Systems Alliance of Oklahoma. Mclean, VA:NASA Ames Research Center, 2016.
[123] PIEN K C, HAN K, SHANG W, et al. Robustness analysis of the European air traffic network[J]. Transportmetrica A:Transport Science, 2015, 11(9):772-792.
[124] WACKWITZ K, BOEDECKER H. Safety risk assessment for UAV operation[EB/OL]. (2015-11)[2019-11-01]. http://www.sarahnilsson.org/app/download/965208764/Safety-Risk-Assessment-for-UAV-Operation-Rev.-1.1.compressed.pdf.
[125] ANSI. Standardization roadmap for unmanned aircraft systems[EB/OL]. (2018-12-20)[2019-04-12].https://www.ansi.org/news_publications/news_story?menuid=7&articleid=58757077-aeb7-4554-b359-4aa34ae8881d.
[126] MATUS F, HEDBLOM B. Addressing the low-altitude airspace integration challenge-USS or UTM core?[C]//2018 Integrated Communications, Navigation, Surveillance Conference (ICNS). Piscataway, NJ:IEEE Press, 2018.
[127] HASSANALIAN M, ABDELKEFI A. Classifications, applications, and design challenges of drones:A review[J]. Progress in Aerospace Sciences, 2017, 91:99-131.
[128] SILVA C, JOHNSON W R, SOLIS E, et al. VTOL urban air mobility concept vehicles for technology development[C]//2018 Aviation Technology, Integration, and Operations Conference. Reston, VA:AIAA, 2018:3847.
[129] JEANNIN J. Security aspects of urban air mobility[EB/OL].[2019-04-12]. https://cra.org/ccc/wp-content/uploads/sites/2/2018/06/JeanBoris_ccc_leadership_in_embedded_security_workshop.pdf.