[1] 朱建文. 助推滑翔飞行器全程自适应制导方法研究[D]. 长沙:国防科技大学, 2016. ZHU J W. Research on adaptive all-course guidance for boost-glide vehicles[D]. Changsha:National University of Defense Technology, 2016(in Chinese).
[2] 何睿智. 高超声速助推滑翔飞行器全程弹道规划方法研究[D]. 长沙:国防科技大学, 2017. HE R Z. Study of all-course trajectory planning approach for hypersonic boost-glide vehicles[D]. Changsha:National University of Defense Technology, 2017(in Chinese).
[3] 王涛. 天地往返飞行器再入预测-校正制导与姿态控制方法研究[D]. 长沙:国防科技大学, 2017. WANG T. Predictor-corrector entry guidance and attitude control for reusable launch vehicle[D]. Changsha:National University of Defense Technology, 2017(in Chinese).
[4] HARPOLD J C, GAVERT D E. Space shuttle entry guidance performance results[J]. Journal of Guidance, Control, and Dynamics, 1983, 6(6):442-447.
[5] HARPOLD J C, GRAVES C A. Shuttle entry guidance[J]. Journal of the Astronautical Sciences, 1979, 27(3):239-268.
[6] 唐硕,闫晓东. 基于反馈线性化的H-V返回轨道跟踪方法[J]. 宇航学报, 2008, 29(5):1546-1550. TANG S, YAN X D. H-V return tracking method based on feedback linearization[J]. Journal of Astronautics, 2008, 29(5):1546-1550(in Chinese).
[7] ZHANG Y, XIE Y, PENG S, et al. Entry trajectory generation with complex constraints based on three-dimensional acceleration profile[J]. Aerospace Science and Technology, 2019, 91:231-240.
[8] ROENNEKE A J, MARKL A. Re-entry control to a drag-vs-energy profile[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(5):916-920.
[9] LU P, HANSON J, BHARGAVA S. An alternative entry guidance scheme for the X-33[C]//23rd Atmospheric Flight Mechanics Conference. Reston,VA:AIAA, 1998.
[10] LEAVITT J A, MEASE K D. Feasible trajectory generation for atmospheric entry guidance[J]. Journal of Guidance, Control and Dynamics, 2007, 30(2):473-481.
[11] XIA Y, CHEN R, PU F, et al. Active disturbance rejection control for drag tracking in mars entry guidance[J]. Advances in Space Research, 2014, 53(5) 853-861.
[12] YU W, CHEN W. Entry guidance with real-time planning of reference based on analytical solutions[J]. Advances in Space Research, 2015, 55(9):2325-2345.
[13] MEASE K D, KREMER J. Shuttle entry guidance revisited using nonlinear geometric methods[J]. Journal of Guidance, Control, and Dynamics 1994, 17(6):1350-1356.
[14] LU P. Regulation about time-varying trajectories:Precision entry guidance illustrated[J]. Journal of Guidance, Control, and Dynamics, 1999, 22(6):784-790.
[15] TALOLE S E, BENITO J, MEASE K D. Sliding mode observer for drag tracking in entry guidance[C]//AIAA Guidance, Navigation and Control Conference and Exhibit. Reston, VA:AIAA, 2007:1-16.
[16] SARAF A, LEAVITT J A, CHEN D T, et al. Design and evaluation of an acceleration guidance algorithm for entry[J]. Journal of Spacecraft and Rockets, 2004, 41(6):986-996.
[17] HU J X, CHEN K J, ZHAO H Y, et al. An evolved entry guidance and performance analysis for reusable launch vehicles[J]. Journal of Astronautics, 2006, 7(6):1409-1413.
[18] LEAVITT J A, SARAF A, CHEN D T, et al. Performance of evolved acceleration guidance logic for entry[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston, VA:AIAA, 2002.
[19] XIE Y, LIU L, TANG G, et al. Highly constrained entry trajectory generation[J]. Acta Astronautica, 2013, 88:44-60.
[20] MEASE K D, TEUFEL P, SCHOENENBERGER H. Reentry trajectory planning for a reusable launch vehicle[C]//24th Atmospheric Flight Mechanics Conference. Reston, VA:AIAA, 1999.
[21] MEASE K D, CHEN D T, TEUFEL P, et al. Reduced-order entry trajectory planning for acceleration guidance[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(2):257-266.
[22] ZHANG Y L, CHEN K J, LIU L H, et al. Entry trajectory planning based on three-dimensional acceleration profile guidance[J]. Aerospace Science and Technology, 2016, 48:131-139.
[23] HE R, ZHANG Y, LIU L, et al. Feasible footprint generation with uncertainty effects[J]. Proceedings of the Institution of Mechanical Engineers Part G:Journal of Aerospace Engineering, 2019, 233(1):138-150.
[24] 李昭莹, 张冉, 李惠峰. RLV轨迹在线重构与动态逆控制跟踪[J]. 宇航学报, 2015, 36(2):196-202. LI Z Y, ZHANG R, LI H F. On board trajectory reconfiguration and dynamic inverse tracking control for RLV[J]. Journal of Astronautics, 2015, 36(2):196-202(in Chinese).
[25] 施健峰, 刘运鹏, 梁禄扬. 基于改进预测校正的滑翔飞行器再入制导方法[J]. 航天控制, 2017, 35(2):51-55. SHI J F, LIU Y P, LIANG L Y. Gliding vehicle reentry guidance based on improved predictor-corrector[J]. Aerospace Control, 2017, 35(2):51-55(in Chinese).
[26] ZENG L, ZHANG H, ZHENG W. A three-dimensional predictor corrector entry guidance based on reduced-order motion equations[J]. Aerospace Science and Technology, 2018,73:223-231.
[27] BRYANT L E, TIGGES M A, IVES D G. Analytic drag control for precision landing and aerocapture[C]//AIAA Atmospheric Flight Mechanics Conference. Reston, VA:AIAA, 1998:1-12.
[28] MASCIARELLI J P, ROUSSEAU S, FRAYSSE H, et al. An analytic aerocapture guidance algorithm for the mars sample return orbiter[C]//Atmospheric Flight Mechanics Conference. Reston, VA:AIAA, 2000.
[29] HANAK C, CRAIN T, MASCIARELLI J. Revised algorithm for analytic predictor-corrector aerocapture guidance-exit phase[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston, VA:AIAA, 2003.
[30] LAFONTAINE J, LEVESQUE J, KRON A. Robust guidance and control algorithms using constant flight path angle for precision landing on mars[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston, VA:AIAA, 2006.
[31] LEVESQUE J, LAFONTAINE J. Optimal guidance using density-proportional flight path angle profile for precision landing on mars[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston, VA:AIAA, 2006.
[32] TIGGES M, LING L. A predictive guidance algorithm for mars entry:AIAA-1989-0632[R]. Reston, VA:AIAA, 1989:1-11.
[33] XU M L, CHEN K J, LIU L H, et al. Quasi-equilibrium glide adaptive guidance for hypersonic vehicles[J]. Science China Technological Sciences, 2012, 55:856-866.
[34] ZHU J W, LIU L H, TANG G J, et al. Highly constrained optimal gliding guidance[J]. Proceedings of the Institution of Mechanical Engineers Part G:Journal of Aerospace Engineering, 2015, 229(12):2321-2335.
[35] POWELL R W. Numerical roll reversal predictor-corrector aerocapture and precision landing guidance algorithm for the mars surveyor program 2001 missions:AIAA-1998-4574[R]. Reston, VA:AIAA, 1998:1-9.
[36] YOUSSEF H, CHOWDHRY R S, LEE H, et al. Predictor-corrector entry guidance for reusable launch vehicles:AIAA-2001-4043[R]. Reston, VA:AIAA, 2001:1-17.
[37] FUHRY D P. Adaptive atmospheric reentry guidance for the kistler k-1 orbital vehicle:AIAA-99-4211[R]. Reston, VA:AIAA, 1999:1275-1288.
[38] LU P. Predictor-corrector entry guidance for low lifting vehicles[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(4):1067-1075.
[39] ZHENG X, HUANG H, LI W. Neural-network-based real-time trajectory replanning for Mars entry guidance[J]. Proceedings of the Institution of Mechanical Engineers Part G:Journal Aerospace Engineering, 2017, 231(14):2634-2645.
[40] LI S, PENG Y. Neural network-based sliding mode variable structure control for Mars entry[J]. Proceedings of the Institution of Mechanical Engineers Part G:Journal Aerospace Engineering, 2012, 226(11):1373-1386.
[41] 王俊波, 曲鑫, 任章. 基于模糊逻辑的预测再入制导方法[J]. 北京航空航天大学学报, 2011, 37(1):63-65. WANG J B, QU X, REN Z. Predictive guidance method for the reentry vehicles based on fuzzy logic[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(1):63-65(in Chinese).
[42] ZHENG Y, CUI H, AI Y. Indirect trajectory optimization for mars entry with maximum terminal altitude[J]. Journal of Spacecraft and Rockets, 2017, 54(5):1068-1079.
[43] 胡建学, 陈克俊, 赵汉元, 等. RLV再入标准轨道制导与轨道预测制导方法比较分析[J]. 国防科技大学学报, 2007, 29(1):26-29. HU J X,CHEN K J,ZHAO H Y,et al. Comparisons between reference-trajectory and predictor-corrector entry guidances for RLVs[J],Journal of National University of Defense Technology, 2007, 29(1):26-29(in Chinese).
[44] HU J X,CHEN K J, ZHAO H Y,et al. Hybrid entry guidance for reusable launch vehicles[J]. Journal of Astronautics,2007,28(1):213-217.
[45] 王青, 莫华东, 吴振东, 等. 基于能量的高超声速飞行器再入混合制导方法[J]. 北京航空航天大学学报, 2014, 40(5):579-584. WANG Q, MO H D, WU Z D, et al. Energy-based hybrid reentry guidance for hypersonic vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(5):579-584(in Chinese).
[46] WANG J B, QU X, REN Z. Hybrid reentry guidance based on the online trajectory planning[J]. Journal of Astronautics, 2012, 33(9):1217-1224.
[47] 王俊波, 田源, 任章. 基于最优化问题的混合再入制导方法[J]. 北京航空航天大学学报, 2010, 36(6):736-740. WANG J B, TIAN Y, REN Z. Mixed guidance method for reentry vehicles based on optimization[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(6):736-740(in Chinese).
[48] JORRIS T R. Common aero vehicle autonomous reentry trajectory optimization satisfying waypoint and no-fly zone constraints[D]. Alabama:Air University, 2007.
[49] JORRIS T R, COBB R G. Three-dimensional trajectory optimization satisfying waypoint and no-fly zone constraints[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(2):551-572.
[50] 赵江, 周锐, 张超. 考虑禁飞区规避的预测校正再入制导方法[J]. 北京航空航天大学学报, 2015, 41(5):864-870. ZHAO J, ZHOU R. ZHANG C. Predictor-corrector reentry guidance satisfying no-fly zone constraints[J]. Journal of Beijing University of Aeronautica and Astronautics, 2015, 41(5):864-870(in Chinese).
[51] 王青, 莫华东, 吴振东, 等. 考虑禁飞圆的高超声速飞行器再入预测制导[J]. 哈尔滨工业大学学报, 2015, 47(2):104-109. WANG Q, MO H D, WU Z D, et al. Predictive reentry guidance for hypersonic vehicles considering no-fly zone[J]. Journal of Harbin Institute of Technology, 2015, 47(2):104-109(in Chinese).
[52] ZHANG D, LI L, WANG Y. On-line reentry guidance algorithm with both path and no-fly zone constraints[J]. Acta Astronautica 2015, 117:243-253.
[53] GUO J, WU X, TANG S. Autonomous gliding entry guidance with geographic constraints[J]. Chinese Journal of Aeronautics, 2015, 28(5):1343-1354.
[54] HE R Z, LIU L, TANG G, et al. Entry trajectory generation without reversal of bank angle[J]. Aerospace Science and Technology, 2017, 71:627-635.
[55] LIANG Z, REN Z. Tentacle-based guidance for entry flight with no-fly zone constraint[J]. Journal of Guidance, Control, and Dynamics, 2017:1-10.
[56] LI Z, HUA C, DING C, et al. Stochastic gradient particle swarm optimization based entry trajectory rapid planning for hypersonic glide vehicles[J]. Aerospace Science and Technology, 2018,76:176-186.
[57] SHEN Z J, LU P. Onboard generation of three-dimensional constrained entry trajectories[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(1):111-121.
[58] JIANG X, LI S. Robust optimization of mars entry trajectory under uncertainty[C]//2018 AIAA Guidance, Navigation, and Control Conference. Reston, VA:AIAA, 2018:1-14.
[59] DARBY C L, HAGER W W, RAO A V. An hp-adaptive pseudospectral method forsolving optimal control problems[J]. Optimal Control Applications&Methods, 2011, 32(4):476-502.
[60] YU Z, ZHAO Z, CUI P. An observability-based trajectory optimization considering disturbance for atmospheric entry[C]//AIAA Guidance, Navigation, and Control Conference. Reston, VA:AIAA, 2016:1-15
[61] MA L, SHAO Z, CHEN W, et al. Three-dimensional trajectory optimization for lunar ascent using gauss pseudospectral method[C]//AIAA Atmospheric Flight Mechanics Conference. Reston, VA:AIAA, 2016:1-12.
[62] ZHAO J, ZHOU R. Reentry trajectory optimization for hypersonic vehicle satisfying complex constraints[J]. Chinese Journal of Aeronautics, 2013, 26(6):1544-1553
[63] ZHANG Y, LIU L, TANG G, et al. Trajectory generation of heat load test based on gauss pseudospectral method[J]. Science China Technological Sciences, 2018, 61(2):273-284.
[64] MILLER A T M, RAO A V. Rapid ascent-entry vehicle mission optimization using hp-adaptive gaussian quadrature collocation[C]//AIAA Atmospheric Flight Mechanics Conference. Reston, VA:AIAA, 2017:1-23.
[65] YANG P, QI R. Reentry trajectory optimization for hypersonic vehicle based on improved mesh refinement techniques[C]//Proceedings of the 35th Chinese Control Conference. Piscataway, NJ:IEEE Press, 2016:1-6
[66] BURCHETT B T. A Gauss pseudospectral collocation for rapid trajectory prediction and guidance[C]//AIAA Atmospheric Flight Mechanics Conference. Reston, VA:AIAA, 2017:1-20.
[67] JIANG X, LI S. Mars atmospheric entry trajectory optimization via particle swarm optimization and Gauss pseudo-spectral method[J]. Proceedings of the Institution of Mechanical Engineers Part G:Journal Aerospace Engineering, 2016, 230(12):2320-2329.
[68] 陈小庆, 侯中喜, 刘建霞. 高超声速滑翔式飞行器再入轨迹多目标多约束优化[J]. 国防科技大学学报, 2009, 31(6):77-83. CHEN X Q, HOU Z X, LIU J X. Multi-objective optimization of reentry trajectory for hypersonic glide vehicle with multi-constraints[J]. Journal of National University of Defense Technology, 2009, 31(6):77-83(in Chinese).
[69] 陈小庆. 高超声速滑翔式飞行器机动技术研究[D]. 长沙:国防科技大学, 2011. CHEN X Q. Study of maneuvering technology for hypersonic gliding vehicle[D]. Changsha:National University of Defense Technology, 2011(in Chinese).
[70] WANG T, ZHANG H, TANG G. Predictor-corrector entry guidance with waypoint and no-fly zone constraints[J]. Acta Astronautica, 2017,138:10-18
[71] SUSHNIGDHA G, JOSHI A. Re-entry trajectory design using pigeon inspired optimization[C]//AIAA Atmospheric Flight Mechanics Conference. Reston, VA:AIAA, 2017:1-12.
[72] WU Y, YAO J, QU X. An adaptive reentry guidance method considering the influence of blackout zone[J]. Acta Astronautica, 2018, 142:253-264.
[73] BLACKMORE L, ACIKMESE B, SCHARF D P. Minimum landing error powered descent guidance for mars landing using convex optimization[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(4):1161-1171.
[74] SAGLIANO M, MOOIJ E. Optimal drag-energy entry guidance via pseudospectral convex optimization[C]//2018 AIAA Guidance, Navigation, and Control Conference. Reston, VA:AIAA, 2018:1-22.
[75] ACIKMESE B, PLOEN S R. Convex programming approach to powered descent guidance for mars landing[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(5):1353-1366.
[76] ACIKMESE B, CARSON J M, BLACKMORE L. Lossless convexification of nonconvex control bound and pointing constraints of the soft landing optimal control problem[J]. IEEE Transactions on Control Systems Technology, 2013, 21(6):2104-2113.
[77] LIU X, LU P. Solving nonconvex optimal control problems by convex optimization[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(3):750-765.
[78] LU P, LIU X. Autonomous trajectory planning for rendezvous and proximity operations by conic optimization[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(2):375-389.
[79] YANG H, BAI X, BAOYIN H. Rapid generation of time-optimal trajectories for asteroid landing via convex optimization[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(3):628-641.
[80] MISRA G, BAI X. Task-constrained trajectory planning of free-floating space-robotic systems using convex optimization[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(11):2857-2870.
[81] CHENG X, LI H F, ZHANG R. Efficient ascent trajectory optimization using convex models based on the newton-kantorovich/pseudospectral approach[J]. Aerospace Science and Technology, 2017, 66:140-151.
[82] CHENG X, LI H F, ZHANG R. Autonomous trajectory planning for space vehicles with a Newton-kantorovich/convex programming approach[J]. Nonlinear Dynamics, 2017, 89:2795-2814
[83] LIU X, SHEN Z, LU P. Entry trajectory optimization by second-order cone programming[J]. Journal of Guidance, Control, and Dynamics, 2016,39(2):227-241.
[84] WANG Z, GRANT M J. Constrained trajectory optimization for planetary entry via sequential convex programming[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(10):2603-2615.
[85] WANG Z, GRANT M J. Near-optimal entry guidance for reference trajectory tracking via convex optimization[C]//2018 AIAA Guidance, Navigation, and Control Conference. Reston, VA:AIAA, 2018:1-21.
[86] ZHAO D, SONG Z. Reentry trajectory optimization with waypoint and no-fly zone constraints using multiphase convex programming[J]. Acta Astronautica, 2017,137:60-69.
[87] 雍恩米, 钱炜祺, 唐伟, 等.考虑禁飞圆的滑翔式机动弹道与气动特性参数耦合设计[J]. 航空学报, 2013, 34(1):66-75. YONG E M, QIAN W Q, TANG W, et al. Coupled design of maneuver glide reentry trajectory and aerodynamic characteristic parameters considering no-fly zone[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(1):66-75(in Chinese).
[88] SOUZA S N D, NESRIN S. A trajectory generation framework for modeling spacecraft entry in MDAO[J]. Acta Astronautica, 2016,121:95-109.
[89] LOBBIA M A. Multidisciplinary design optimization of waverider-drived crew reentry vehicles[J]. Journal of Spacecraft and Rockets, 2017, 54(1):233-245
[90] WANG W K, HOU Z, LIU D, et al. Heat-augmented trajectory optimization of hypersonic cruise vehicle[C]//21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston, VA:AIAA, 2017:1-21.
[91] ZHAO C, GUO L. PID controller design for second order nonlinear uncertain systems[J]. Science China Information Sciences, 2017, 60(2):1-13.
[92] LIU L, ZHU J, TANG G, et al. Diving guidance via feedback linearization and sliding mode control[J]. Aerospace Science and Technology, 2015, 41:16-23.
[93] DUKEMAN G A. Profile-following entry guidance using linear quadratic regulator theory:AIAA-2002-4457[R]. Reston, VA:AIAA, 2002:1-10.
[94] 高志强. 自抗扰控制思想探究[J]. 控制理论与应用, 2013, 30(12):1498-1510. GAO Z Q. On the foundation of active disturbance rejection control[J]. Control Theory & Applications, 2013, 30(12):1498-1510(in Chinese).
[95] DAI J, XIA Y. Mars atmospheric entry guidance for reference trajectory tracking[J]. Aerospace Science and Technology, 2015,45:335-345
[96] 杨俊春, 倪茂林, 胡军. 基于强跟踪滤波器的再入飞行器制导律设计[J]. 系统仿真学报, 2007, 19(11):2535-2538. YANG J C, NI M L, HU J. Design of entry guidance based on strong tracking filter for reentry spacecraft[J]. Journal of System Simulation, 2007, 19(11):2535-2538(in Chinese).
[97] ZHU J W, ZHANG S. Adaptive optimal gliding guidance independent of QEGC[J]. Aerospace Science and Technology, 2017, 71:373-381.
[98] LI Q, XIA Q L, CUI Y Y, et al. Reentry predicted guidance algorithm for reusable launch vehicles based on density estimation[J]. Transactions of Beijing Institute of Technology, 2013; 33(1):84-88.
[99] BRUNNER C, LU P. Skip entry trajectory planning and guidance[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(5):1210-1219.