Review

Review of trajectory planning and guidance methods for gliding vehicles

  • ZHANG Yuanlong ,
  • XIE Yu
Expand
  • College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China

Received date: 2019-08-13

  Revised date: 2019-09-19

  Online published: 2019-10-25

Supported by

National Natural Science Foundation of China (11902346, 11502289)

Abstract

The gliding vehicle has become a hotspot in the field of aerospace research with its outstanding maneuvering capability, high-precision strike, and rapid global reach. As a core part of controlling vehicle to reliably perform a given mission, trajectory planning and guidance methods are the focus of scholars. This paper outlines the current trajectory planning and guidance methods for gliding vehicles, especially the progress of trajectory planning and guidance methods based on standard profiles and predictor-corrector ideas. Furthermore, the research hotspots and difficulties of gliding vehicles trajectory planning and guidance methods are analyzed. Finally, referencing to artificial intelligence, the future development trend of gliding vehicles trajectory planning and guidance methods is prospected.

Cite this article

ZHANG Yuanlong , XIE Yu . Review of trajectory planning and guidance methods for gliding vehicles[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(1) : 23377 -023377 . DOI: 10.7527/S1000-6893.2019.23377

References

[1] 朱建文. 助推滑翔飞行器全程自适应制导方法研究[D]. 长沙:国防科技大学, 2016. ZHU J W. Research on adaptive all-course guidance for boost-glide vehicles[D]. Changsha:National University of Defense Technology, 2016(in Chinese).
[2] 何睿智. 高超声速助推滑翔飞行器全程弹道规划方法研究[D]. 长沙:国防科技大学, 2017. HE R Z. Study of all-course trajectory planning approach for hypersonic boost-glide vehicles[D]. Changsha:National University of Defense Technology, 2017(in Chinese).
[3] 王涛. 天地往返飞行器再入预测-校正制导与姿态控制方法研究[D]. 长沙:国防科技大学, 2017. WANG T. Predictor-corrector entry guidance and attitude control for reusable launch vehicle[D]. Changsha:National University of Defense Technology, 2017(in Chinese).
[4] HARPOLD J C, GAVERT D E. Space shuttle entry guidance performance results[J]. Journal of Guidance, Control, and Dynamics, 1983, 6(6):442-447.
[5] HARPOLD J C, GRAVES C A. Shuttle entry guidance[J]. Journal of the Astronautical Sciences, 1979, 27(3):239-268.
[6] 唐硕,闫晓东. 基于反馈线性化的H-V返回轨道跟踪方法[J]. 宇航学报, 2008, 29(5):1546-1550. TANG S, YAN X D. H-V return tracking method based on feedback linearization[J]. Journal of Astronautics, 2008, 29(5):1546-1550(in Chinese).
[7] ZHANG Y, XIE Y, PENG S, et al. Entry trajectory generation with complex constraints based on three-dimensional acceleration profile[J]. Aerospace Science and Technology, 2019, 91:231-240.
[8] ROENNEKE A J, MARKL A. Re-entry control to a drag-vs-energy profile[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(5):916-920.
[9] LU P, HANSON J, BHARGAVA S. An alternative entry guidance scheme for the X-33[C]//23rd Atmospheric Flight Mechanics Conference. Reston,VA:AIAA, 1998.
[10] LEAVITT J A, MEASE K D. Feasible trajectory generation for atmospheric entry guidance[J]. Journal of Guidance, Control and Dynamics, 2007, 30(2):473-481.
[11] XIA Y, CHEN R, PU F, et al. Active disturbance rejection control for drag tracking in mars entry guidance[J]. Advances in Space Research, 2014, 53(5) 853-861.
[12] YU W, CHEN W. Entry guidance with real-time planning of reference based on analytical solutions[J]. Advances in Space Research, 2015, 55(9):2325-2345.
[13] MEASE K D, KREMER J. Shuttle entry guidance revisited using nonlinear geometric methods[J]. Journal of Guidance, Control, and Dynamics 1994, 17(6):1350-1356.
[14] LU P. Regulation about time-varying trajectories:Precision entry guidance illustrated[J]. Journal of Guidance, Control, and Dynamics, 1999, 22(6):784-790.
[15] TALOLE S E, BENITO J, MEASE K D. Sliding mode observer for drag tracking in entry guidance[C]//AIAA Guidance, Navigation and Control Conference and Exhibit. Reston, VA:AIAA, 2007:1-16.
[16] SARAF A, LEAVITT J A, CHEN D T, et al. Design and evaluation of an acceleration guidance algorithm for entry[J]. Journal of Spacecraft and Rockets, 2004, 41(6):986-996.
[17] HU J X, CHEN K J, ZHAO H Y, et al. An evolved entry guidance and performance analysis for reusable launch vehicles[J]. Journal of Astronautics, 2006, 7(6):1409-1413.
[18] LEAVITT J A, SARAF A, CHEN D T, et al. Performance of evolved acceleration guidance logic for entry[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston, VA:AIAA, 2002.
[19] XIE Y, LIU L, TANG G, et al. Highly constrained entry trajectory generation[J]. Acta Astronautica, 2013, 88:44-60.
[20] MEASE K D, TEUFEL P, SCHOENENBERGER H. Reentry trajectory planning for a reusable launch vehicle[C]//24th Atmospheric Flight Mechanics Conference. Reston, VA:AIAA, 1999.
[21] MEASE K D, CHEN D T, TEUFEL P, et al. Reduced-order entry trajectory planning for acceleration guidance[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(2):257-266.
[22] ZHANG Y L, CHEN K J, LIU L H, et al. Entry trajectory planning based on three-dimensional acceleration profile guidance[J]. Aerospace Science and Technology, 2016, 48:131-139.
[23] HE R, ZHANG Y, LIU L, et al. Feasible footprint generation with uncertainty effects[J]. Proceedings of the Institution of Mechanical Engineers Part G:Journal of Aerospace Engineering, 2019, 233(1):138-150.
[24] 李昭莹, 张冉, 李惠峰. RLV轨迹在线重构与动态逆控制跟踪[J]. 宇航学报, 2015, 36(2):196-202. LI Z Y, ZHANG R, LI H F. On board trajectory reconfiguration and dynamic inverse tracking control for RLV[J]. Journal of Astronautics, 2015, 36(2):196-202(in Chinese).
[25] 施健峰, 刘运鹏, 梁禄扬. 基于改进预测校正的滑翔飞行器再入制导方法[J]. 航天控制, 2017, 35(2):51-55. SHI J F, LIU Y P, LIANG L Y. Gliding vehicle reentry guidance based on improved predictor-corrector[J]. Aerospace Control, 2017, 35(2):51-55(in Chinese).
[26] ZENG L, ZHANG H, ZHENG W. A three-dimensional predictor corrector entry guidance based on reduced-order motion equations[J]. Aerospace Science and Technology, 2018,73:223-231.
[27] BRYANT L E, TIGGES M A, IVES D G. Analytic drag control for precision landing and aerocapture[C]//AIAA Atmospheric Flight Mechanics Conference. Reston, VA:AIAA, 1998:1-12.
[28] MASCIARELLI J P, ROUSSEAU S, FRAYSSE H, et al. An analytic aerocapture guidance algorithm for the mars sample return orbiter[C]//Atmospheric Flight Mechanics Conference. Reston, VA:AIAA, 2000.
[29] HANAK C, CRAIN T, MASCIARELLI J. Revised algorithm for analytic predictor-corrector aerocapture guidance-exit phase[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston, VA:AIAA, 2003.
[30] LAFONTAINE J, LEVESQUE J, KRON A. Robust guidance and control algorithms using constant flight path angle for precision landing on mars[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston, VA:AIAA, 2006.
[31] LEVESQUE J, LAFONTAINE J. Optimal guidance using density-proportional flight path angle profile for precision landing on mars[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston, VA:AIAA, 2006.
[32] TIGGES M, LING L. A predictive guidance algorithm for mars entry:AIAA-1989-0632[R]. Reston, VA:AIAA, 1989:1-11.
[33] XU M L, CHEN K J, LIU L H, et al. Quasi-equilibrium glide adaptive guidance for hypersonic vehicles[J]. Science China Technological Sciences, 2012, 55:856-866.
[34] ZHU J W, LIU L H, TANG G J, et al. Highly constrained optimal gliding guidance[J]. Proceedings of the Institution of Mechanical Engineers Part G:Journal of Aerospace Engineering, 2015, 229(12):2321-2335.
[35] POWELL R W. Numerical roll reversal predictor-corrector aerocapture and precision landing guidance algorithm for the mars surveyor program 2001 missions:AIAA-1998-4574[R]. Reston, VA:AIAA, 1998:1-9.
[36] YOUSSEF H, CHOWDHRY R S, LEE H, et al. Predictor-corrector entry guidance for reusable launch vehicles:AIAA-2001-4043[R]. Reston, VA:AIAA, 2001:1-17.
[37] FUHRY D P. Adaptive atmospheric reentry guidance for the kistler k-1 orbital vehicle:AIAA-99-4211[R]. Reston, VA:AIAA, 1999:1275-1288.
[38] LU P. Predictor-corrector entry guidance for low lifting vehicles[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(4):1067-1075.
[39] ZHENG X, HUANG H, LI W. Neural-network-based real-time trajectory replanning for Mars entry guidance[J]. Proceedings of the Institution of Mechanical Engineers Part G:Journal Aerospace Engineering, 2017, 231(14):2634-2645.
[40] LI S, PENG Y. Neural network-based sliding mode variable structure control for Mars entry[J]. Proceedings of the Institution of Mechanical Engineers Part G:Journal Aerospace Engineering, 2012, 226(11):1373-1386.
[41] 王俊波, 曲鑫, 任章. 基于模糊逻辑的预测再入制导方法[J]. 北京航空航天大学学报, 2011, 37(1):63-65. WANG J B, QU X, REN Z. Predictive guidance method for the reentry vehicles based on fuzzy logic[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(1):63-65(in Chinese).
[42] ZHENG Y, CUI H, AI Y. Indirect trajectory optimization for mars entry with maximum terminal altitude[J]. Journal of Spacecraft and Rockets, 2017, 54(5):1068-1079.
[43] 胡建学, 陈克俊, 赵汉元, 等. RLV再入标准轨道制导与轨道预测制导方法比较分析[J]. 国防科技大学学报, 2007, 29(1):26-29. HU J X,CHEN K J,ZHAO H Y,et al. Comparisons between reference-trajectory and predictor-corrector entry guidances for RLVs[J],Journal of National University of Defense Technology, 2007, 29(1):26-29(in Chinese).
[44] HU J X,CHEN K J, ZHAO H Y,et al. Hybrid entry guidance for reusable launch vehicles[J]. Journal of Astronautics,2007,28(1):213-217.
[45] 王青, 莫华东, 吴振东, 等. 基于能量的高超声速飞行器再入混合制导方法[J]. 北京航空航天大学学报, 2014, 40(5):579-584. WANG Q, MO H D, WU Z D, et al. Energy-based hybrid reentry guidance for hypersonic vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(5):579-584(in Chinese).
[46] WANG J B, QU X, REN Z. Hybrid reentry guidance based on the online trajectory planning[J]. Journal of Astronautics, 2012, 33(9):1217-1224.
[47] 王俊波, 田源, 任章. 基于最优化问题的混合再入制导方法[J]. 北京航空航天大学学报, 2010, 36(6):736-740. WANG J B, TIAN Y, REN Z. Mixed guidance method for reentry vehicles based on optimization[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(6):736-740(in Chinese).
[48] JORRIS T R. Common aero vehicle autonomous reentry trajectory optimization satisfying waypoint and no-fly zone constraints[D]. Alabama:Air University, 2007.
[49] JORRIS T R, COBB R G. Three-dimensional trajectory optimization satisfying waypoint and no-fly zone constraints[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(2):551-572.
[50] 赵江, 周锐, 张超. 考虑禁飞区规避的预测校正再入制导方法[J]. 北京航空航天大学学报, 2015, 41(5):864-870. ZHAO J, ZHOU R. ZHANG C. Predictor-corrector reentry guidance satisfying no-fly zone constraints[J]. Journal of Beijing University of Aeronautica and Astronautics, 2015, 41(5):864-870(in Chinese).
[51] 王青, 莫华东, 吴振东, 等. 考虑禁飞圆的高超声速飞行器再入预测制导[J]. 哈尔滨工业大学学报, 2015, 47(2):104-109. WANG Q, MO H D, WU Z D, et al. Predictive reentry guidance for hypersonic vehicles considering no-fly zone[J]. Journal of Harbin Institute of Technology, 2015, 47(2):104-109(in Chinese).
[52] ZHANG D, LI L, WANG Y. On-line reentry guidance algorithm with both path and no-fly zone constraints[J]. Acta Astronautica 2015, 117:243-253.
[53] GUO J, WU X, TANG S. Autonomous gliding entry guidance with geographic constraints[J]. Chinese Journal of Aeronautics, 2015, 28(5):1343-1354.
[54] HE R Z, LIU L, TANG G, et al. Entry trajectory generation without reversal of bank angle[J]. Aerospace Science and Technology, 2017, 71:627-635.
[55] LIANG Z, REN Z. Tentacle-based guidance for entry flight with no-fly zone constraint[J]. Journal of Guidance, Control, and Dynamics, 2017:1-10.
[56] LI Z, HUA C, DING C, et al. Stochastic gradient particle swarm optimization based entry trajectory rapid planning for hypersonic glide vehicles[J]. Aerospace Science and Technology, 2018,76:176-186.
[57] SHEN Z J, LU P. Onboard generation of three-dimensional constrained entry trajectories[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(1):111-121.
[58] JIANG X, LI S. Robust optimization of mars entry trajectory under uncertainty[C]//2018 AIAA Guidance, Navigation, and Control Conference. Reston, VA:AIAA, 2018:1-14.
[59] DARBY C L, HAGER W W, RAO A V. An hp-adaptive pseudospectral method forsolving optimal control problems[J]. Optimal Control Applications&Methods, 2011, 32(4):476-502.
[60] YU Z, ZHAO Z, CUI P. An observability-based trajectory optimization considering disturbance for atmospheric entry[C]//AIAA Guidance, Navigation, and Control Conference. Reston, VA:AIAA, 2016:1-15
[61] MA L, SHAO Z, CHEN W, et al. Three-dimensional trajectory optimization for lunar ascent using gauss pseudospectral method[C]//AIAA Atmospheric Flight Mechanics Conference. Reston, VA:AIAA, 2016:1-12.
[62] ZHAO J, ZHOU R. Reentry trajectory optimization for hypersonic vehicle satisfying complex constraints[J]. Chinese Journal of Aeronautics, 2013, 26(6):1544-1553
[63] ZHANG Y, LIU L, TANG G, et al. Trajectory generation of heat load test based on gauss pseudospectral method[J]. Science China Technological Sciences, 2018, 61(2):273-284.
[64] MILLER A T M, RAO A V. Rapid ascent-entry vehicle mission optimization using hp-adaptive gaussian quadrature collocation[C]//AIAA Atmospheric Flight Mechanics Conference. Reston, VA:AIAA, 2017:1-23.
[65] YANG P, QI R. Reentry trajectory optimization for hypersonic vehicle based on improved mesh refinement techniques[C]//Proceedings of the 35th Chinese Control Conference. Piscataway, NJ:IEEE Press, 2016:1-6
[66] BURCHETT B T. A Gauss pseudospectral collocation for rapid trajectory prediction and guidance[C]//AIAA Atmospheric Flight Mechanics Conference. Reston, VA:AIAA, 2017:1-20.
[67] JIANG X, LI S. Mars atmospheric entry trajectory optimization via particle swarm optimization and Gauss pseudo-spectral method[J]. Proceedings of the Institution of Mechanical Engineers Part G:Journal Aerospace Engineering, 2016, 230(12):2320-2329.
[68] 陈小庆, 侯中喜, 刘建霞. 高超声速滑翔式飞行器再入轨迹多目标多约束优化[J]. 国防科技大学学报, 2009, 31(6):77-83. CHEN X Q, HOU Z X, LIU J X. Multi-objective optimization of reentry trajectory for hypersonic glide vehicle with multi-constraints[J]. Journal of National University of Defense Technology, 2009, 31(6):77-83(in Chinese).
[69] 陈小庆. 高超声速滑翔式飞行器机动技术研究[D]. 长沙:国防科技大学, 2011. CHEN X Q. Study of maneuvering technology for hypersonic gliding vehicle[D]. Changsha:National University of Defense Technology, 2011(in Chinese).
[70] WANG T, ZHANG H, TANG G. Predictor-corrector entry guidance with waypoint and no-fly zone constraints[J]. Acta Astronautica, 2017,138:10-18
[71] SUSHNIGDHA G, JOSHI A. Re-entry trajectory design using pigeon inspired optimization[C]//AIAA Atmospheric Flight Mechanics Conference. Reston, VA:AIAA, 2017:1-12.
[72] WU Y, YAO J, QU X. An adaptive reentry guidance method considering the influence of blackout zone[J]. Acta Astronautica, 2018, 142:253-264.
[73] BLACKMORE L, ACIKMESE B, SCHARF D P. Minimum landing error powered descent guidance for mars landing using convex optimization[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(4):1161-1171.
[74] SAGLIANO M, MOOIJ E. Optimal drag-energy entry guidance via pseudospectral convex optimization[C]//2018 AIAA Guidance, Navigation, and Control Conference. Reston, VA:AIAA, 2018:1-22.
[75] ACIKMESE B, PLOEN S R. Convex programming approach to powered descent guidance for mars landing[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(5):1353-1366.
[76] ACIKMESE B, CARSON J M, BLACKMORE L. Lossless convexification of nonconvex control bound and pointing constraints of the soft landing optimal control problem[J]. IEEE Transactions on Control Systems Technology, 2013, 21(6):2104-2113.
[77] LIU X, LU P. Solving nonconvex optimal control problems by convex optimization[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(3):750-765.
[78] LU P, LIU X. Autonomous trajectory planning for rendezvous and proximity operations by conic optimization[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(2):375-389.
[79] YANG H, BAI X, BAOYIN H. Rapid generation of time-optimal trajectories for asteroid landing via convex optimization[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(3):628-641.
[80] MISRA G, BAI X. Task-constrained trajectory planning of free-floating space-robotic systems using convex optimization[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(11):2857-2870.
[81] CHENG X, LI H F, ZHANG R. Efficient ascent trajectory optimization using convex models based on the newton-kantorovich/pseudospectral approach[J]. Aerospace Science and Technology, 2017, 66:140-151.
[82] CHENG X, LI H F, ZHANG R. Autonomous trajectory planning for space vehicles with a Newton-kantorovich/convex programming approach[J]. Nonlinear Dynamics, 2017, 89:2795-2814
[83] LIU X, SHEN Z, LU P. Entry trajectory optimization by second-order cone programming[J]. Journal of Guidance, Control, and Dynamics, 2016,39(2):227-241.
[84] WANG Z, GRANT M J. Constrained trajectory optimization for planetary entry via sequential convex programming[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(10):2603-2615.
[85] WANG Z, GRANT M J. Near-optimal entry guidance for reference trajectory tracking via convex optimization[C]//2018 AIAA Guidance, Navigation, and Control Conference. Reston, VA:AIAA, 2018:1-21.
[86] ZHAO D, SONG Z. Reentry trajectory optimization with waypoint and no-fly zone constraints using multiphase convex programming[J]. Acta Astronautica, 2017,137:60-69.
[87] 雍恩米, 钱炜祺, 唐伟, 等.考虑禁飞圆的滑翔式机动弹道与气动特性参数耦合设计[J]. 航空学报, 2013, 34(1):66-75. YONG E M, QIAN W Q, TANG W, et al. Coupled design of maneuver glide reentry trajectory and aerodynamic characteristic parameters considering no-fly zone[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(1):66-75(in Chinese).
[88] SOUZA S N D, NESRIN S. A trajectory generation framework for modeling spacecraft entry in MDAO[J]. Acta Astronautica, 2016,121:95-109.
[89] LOBBIA M A. Multidisciplinary design optimization of waverider-drived crew reentry vehicles[J]. Journal of Spacecraft and Rockets, 2017, 54(1):233-245
[90] WANG W K, HOU Z, LIU D, et al. Heat-augmented trajectory optimization of hypersonic cruise vehicle[C]//21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston, VA:AIAA, 2017:1-21.
[91] ZHAO C, GUO L. PID controller design for second order nonlinear uncertain systems[J]. Science China Information Sciences, 2017, 60(2):1-13.
[92] LIU L, ZHU J, TANG G, et al. Diving guidance via feedback linearization and sliding mode control[J]. Aerospace Science and Technology, 2015, 41:16-23.
[93] DUKEMAN G A. Profile-following entry guidance using linear quadratic regulator theory:AIAA-2002-4457[R]. Reston, VA:AIAA, 2002:1-10.
[94] 高志强. 自抗扰控制思想探究[J]. 控制理论与应用, 2013, 30(12):1498-1510. GAO Z Q. On the foundation of active disturbance rejection control[J]. Control Theory & Applications, 2013, 30(12):1498-1510(in Chinese).
[95] DAI J, XIA Y. Mars atmospheric entry guidance for reference trajectory tracking[J]. Aerospace Science and Technology, 2015,45:335-345
[96] 杨俊春, 倪茂林, 胡军. 基于强跟踪滤波器的再入飞行器制导律设计[J]. 系统仿真学报, 2007, 19(11):2535-2538. YANG J C, NI M L, HU J. Design of entry guidance based on strong tracking filter for reentry spacecraft[J]. Journal of System Simulation, 2007, 19(11):2535-2538(in Chinese).
[97] ZHU J W, ZHANG S. Adaptive optimal gliding guidance independent of QEGC[J]. Aerospace Science and Technology, 2017, 71:373-381.
[98] LI Q, XIA Q L, CUI Y Y, et al. Reentry predicted guidance algorithm for reusable launch vehicles based on density estimation[J]. Transactions of Beijing Institute of Technology, 2013; 33(1):84-88.
[99] BRUNNER C, LU P. Skip entry trajectory planning and guidance[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(5):1210-1219.
Outlines

/