The airframe of high performance fighter requires light weight, long life, multi-function, and high g capacity. To achieve this goal, in addition to the contribution of materials and manufacturing technology (new materials, new processes, and new structures), structural strength design, analysis, and verification technology of design institute must also be improved to meet the requirements. Focusing on the requirements of structural integrity, this paper describes the research results, technical development, and design practice of the strength team in recent years. It mainly includes the specification architecture for strength design and verification of high performance fighter, structural load screening technology based on multi-dimensional envelope, internal loads analysis technology based on unified FEM model, composite integrated structure analysis technology, detail stress analysis technology with high precision and efficiency, pre-tightening principle and strength design of embedded weapon bay door, rapid modeling, and acoustic fatigue analysis method of curved stiffened panel, prognostic and health management system design. The above research results have been successfully applied to the development of a new generation of high performance fighter airframe.
ZHANG Lixin
,
ZHONG Shunlu
,
LIU Xiaodong
,
FU Huanbing
,
DUI Hongna
,
LIU Dongliang
,
JING Luyun
,
MOU Binjie
,
SHI Shanglu
. Development and application of strength design technology of high performance fighter[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020
, 41(6)
: 523480
-523480
.
DOI: 10.7527/S1000-6893.2019.23480
[1] USAF. Aircraft structural integrity program (ASIP):MIL-STD-1530A[S]. ASC/ENOI, 1975.
[2] 中国人民解放军总装备部.军用飞机结构完整性大纲:GJB 775A-2012[S].北京:中国人民解放军总装备部,2012. General Armament Department of the PLA.Military aircraft structural integrity program:GJB 775A-2012[S].Beijing:General Armament Department of the PLA, 2012(in Chinese).
[3] YOOL K, STEPHEN S, DARRYL L. A survey of aircraft structural life management programs in the U.S. Navy, the Canadian Forces, and the U.S. Air Force[M]. Santa Monica:the RAND Corporation, 2006.
[4] ZEIGLER M. An overview of the wright laboratory structural integrity of aging aircraft core area:AIAA-1997-1162[R]. Reston:AIAA,1997.
[5] ROBERT M E, PHILIP C G, JOSEPH B Y,et al. F-35 structural design, development, and verification:AIAA-2018-3415[R]. Reston:AIAA,2018.
[6] BALL D L, NORWOOD D S. Joint strike fighter airframe durability and damage tolerance certification:AIAA-2006-1867[R]. Reston:AIAA, 2006.
[7] NICOLAI L M, CARICHNER G E. Fundamentals of aircraft and airship design, Volume 1-Aircraft design[M]. Reston:AIAA, 2010.
[8] MICHAEL N C Y. Airframe stress analysis and sizing[M]. 2nd ed. California:Conmilit Press Ltd, 1997.
[9] 《飞机设计手册》总编委会.飞机设计手册第9册[M]. 北京:航空工业出版社, 2001:55-61. Aircraft Design Manual for the General Editorial Board. Aircraft design manual volume 9[M]. Beijing:Aviation Industry Press, 2001:55-61(in Chinese).
[10] 王勖成. 有限单元法[M]. 北京:清华大学出版社, 2003. WANG X C. Finite element method[M]. Beijing:Tsinghua University Press, 2003(in Chinese).
[11] 邓扬晨, 邱可鹏, 张卫红,等.基于传力路径下结构优化设计研究[J].机械科学与技术,2003,4(22):622-626. DENG Y C, QIU K P, ZHANG W H, et al. Structural optimization design based on the path of force transfer[J]. Mechanical Science and Technology, 2003, 4(22):622-626(in Chinese).
[12] WAGNER W, BALZANI C. Simulation of delamination in stringer stiffened fiber-reinforced composite shells[J]. Composite Structures, 2008, 86:930-939.
[13] STICKLER P B, RAMULU M. Damage progression analyses of transverse stitched T-joints under flexure and tensile loading[J]. Advanced Composite Materials, 2006,15(2):243-261.
[14] 张朝晖, 刘嘉, 彭涛,等. 复合材料T型整体化结构的刚度简化计算方法[J]. 清华大学学报(自然科学版), 2011,51(12):1882-1886. ZHANG Z H, LIU J, PENG T, et al. Simplified method for the stiffness computation of T-shaped integrated composite structure[J]. Journal of Tsinghua University (Sci & Tech), 2011, 51(12):1882-1886(in Chinese).
[15] TURNER M, CLOUGH R, MARTIN H C,et al. Stiffness and deflection analysis of complex structures[J]. Journal of the Aeronautical Sciences, 1956, 23(9):805-823.
[16] ARGYRIS J H, KELSEY S. Energy theorems and structural analysis[M].Berlin:Springer Science Business Media, 1960.
[17] ALEXANDER R, JOSEPH B K. Multi-spring representation of fasteners for Msc/Nastran modeling:MS K95-043801[R]. Wichita:Boeing Commercial Airplane Group.
[18] 廖海涛,王克明.噪声载荷作用下航空薄壁壳体的随机振动响应[J]. 沈阳航空工业学院学报, 2007, 24(1):6-8. LIAO H T, WANG K M. Random vibration response of aeronautical thin-walled shell under noise loading[J]. Journal of Shenyang Institute of Aeronautical Engineering, 2007, 24(1):6-8(in Chinese).
[19] 刘建涛. 薄壁结构响应特性有限元数值模拟和疲劳寿命预计方法研究[D].成都:电子科技大学, 2011. LIU J T. Finite element numerical simulation of response characteristics of thin-walled structures and fatigue life prediction method[D]. Chengdu:University of Electronic Science and Technology of China, 2011(in Chinese).
[20] SMITH G, SCHROEDER J B, NAVARRO S, et al. Development of a prognostics and health management capability for the joint strike fighter[C]//IEEE Autotestcon Proceedings AUTOTESTCON'97. IEEE Systems Readiness Technology Conference. Systems Readiness Supporting Global Needs and Awareness in the 21st Century.Piscataway:IEEE Press,1997.
[21] AKTEPE B, MOLENT L. Management of airframe fatigue through individual aircraft loads monitoring programs[C]//Proceedings 8th International Aerospace Congress, 1999.
[22] MOLENT L, AKTEPE B. Review of fatigue monitoring of agile military aircraft[J]. Journal of Fatigue and Fracture of Engineering Materials and Structures, 2000, 23:767-785.
[23] KANEKO H, FURUKAWA T. Operational loads regression equation development for advanced fighter aircraft[C]//24th International Congress of the Aeronautical Sciences, 2004.
[24] TIKKA J, SALONEN T. Parameter based fatigue life analysis for F-18 aircraft[C]//24th ICAF Symposium, 2007.
[25] WANG Y J, DONG J, LIU X D, et al. Identification and standardization of maneuvers based upon operational flight data[J]. Chinese Journal of Aeronautics, 2015, 28(1):133-140.
[26] WANG Y J, DONG J, DUI H N, et al. Aircraft structural load identification technology with high accuracy in SPHM system[C]//29th ICAF Symposium, 2017.
[27] DUI H N, WANG Y J, DONG J, et al. Research on an optimal multiple linear regression model for aircraft structural load analysis[C]//29th ICAF Symposium,2017.
[28] 兑红娜, 王勇军, 董江, 等. 基于飞行参数的飞机结构载荷最优回归模型[J]. 航空学报, 2018,39(11):222158. DUI H N, WANG Y J, DONG J, et al. Optimal regression model for aircraft structural load based on flight data[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(11):222158(in Chinese).
[29] 孙侠生,肖迎春. 飞机结构健康监测技术的机遇与挑战[J]. 航空学报, 2014, 35(12):3199-3212. SUN X S, XIAO Y C. Opportunities and challenges of aircraft structural health monitoring[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(12):3199-3212(in Chinese).
[30] IYYER N, SARKAR S, MERRILL R,et al. Aircraft life management using crack initiation and crack growth models-p-3c aircraft experience[J]. International Journal of Fatigue, 2007, 29(9-11):1584-1607.
[31] IYYER N, SARKAR S. Management of aging aircraft using deterministic and probabilistic metrics[C]//11th Joint NASA/FAA/DOD Conference on Aging Aircraft.Washington,D.C.:NASA,2008.
[32] DUI H N, LIU X D, DONG J, et al. Assessment of aircraft structural service life using generalized correction methodology[C]//ICAF 2019 Structural Integrity in the Age of Additive Manufacturing.Berlin:Springer, 2020.