Fluid Mechanics and Flight Mechanics

Comprehensive study on yaw control characteristic of combined control surfaces of flying wing configuration

  • ZHOU Zhu ,
  • YU Yonggang ,
  • LIU Gang ,
  • CHEN Zuobin ,
  • HE Kaifeng
Expand
  • China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2019-09-02

  Revised date: 2019-09-21

  Online published: 2019-10-24

Abstract

Searching for effective and practical yaw control measures has always been a difficult point in the design of flying-wing aircraft. This paper presents a yaw control method of combined rudder consisting of a spoiler drag rudder on the upper surface of the outer wing and its corresponding trailing aileron. The yaw control characteristics of single component and combined rudder at low and subsonic speeds are studied comprehensively by three means of CFD, wind tunnel test, and model flight test. Research results show that the yaw control ability of the single drag rudder is relatively strong, but its coupling with the longitudinal and lateral moments is severe, and needs to be combined with other rudders. It is suggested that the aileron should not be used alone as a yaw control measure because of its weak yaw control capability and serious coupling with longitudinal and lateral moments. The combined rudder has strong yaw control ability. Selecting the scheme of combined rudder with the difference of rudder deviation between drag rudder and aileron in the range of 0°-5° can greatly reduce the coupling degree of longitudinal and lateral moments and realize the decoupling design of control rudder. Whether single component or combined rudder, the moment regularity of the rudder deviation angle in the range of 0°-6° is poor, and it is suggested to avoid this angle area by presetting the rudder deviation angle.

Cite this article

ZHOU Zhu , YU Yonggang , LIU Gang , CHEN Zuobin , HE Kaifeng . Comprehensive study on yaw control characteristic of combined control surfaces of flying wing configuration[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(6) : 523422 -523422 . DOI: 10.7527/S1000-6893.2019.23422

References

[1] 余永刚, 黄勇, 周铸, 等.飞翼布局气动外形设计[J].空气动力学学报, 2017, 35(6):832-836,878. YU Y G, HUANG Y, ZHOU Z, et al. Aerodynamic design of a flying-wing aircraft[J]. Acta Aerodynamica Sinica, 2017, 35(6):832-836, 878(in Chinese).
[2] BOWLUS J A, MULTHOPP D. Challenges and opportunities in tailless aircraft stability and control:AIAA-1997-3830[R]. Reston:AIAA, 1997.
[3] DORSETT K M, MEIL D R. Innovative control effectors (ICE):WL-TR-96-3043[R]. 1996.
[4] GILLARD W J. Innovative control effectors (configuration 101) dynamic wind tunnel test report rotary balance and force oscillation tests:AFRL-VA-WP-TP-1998-3043[R]. 1998.
[5] STENFELT G, RINGELTZ U. Lateral stability and control of a tailless aircraft configuration[J]. Journal of Aircraft, 2009, 46(6):2161-2163.
[6] NANGIA R K, BOELENS O J, TORMALM M. A tale of two UCAV wing designs:AIAA-2010-4397[R]. Reston:AIAA, 2010.
[7] WOLF R, KRUGER, HOFFMANN D. Design considerations for a UCAV wing for subsonic and transonic aeroelastic and flight mechanic wind tunnel tests:ADA-478721[R].2007.
[8] ZHANG F, KHALID M, BALL N. A CFD based study of UCAV 1303 model:AIAA-2005-4615[R]. Reston:AIAA, 2005.
[9] CHOI S M, NGUYEN N V, et al. Multidisciplinary unmanned combat air vehicle system design using multi-fidelity analysis:AIAA-2010-0482[R]. Reston:AIAA, 2010.
[10] 刘刚, 邱玉鑫, 陈洪, 等. 无尾飞机布局方向制特性研究[J]. 流体力学实验与测量, 2003, 17(4):1-9. LIU G, QIU Y X, CHEN H, et al. Investigation of the direction control for the tailless aircraft configuration[J]. Experiments and Measurements in Fluid Mechanics, 2003, 17(4):1-9(in Chinese).
[11] 柴雪, 王钢林, 武哲. 大后掠飞翼布局无人机操纵面特性及控制研究[J]. 飞行力学, 2009,27(6):26-29. CHAI X, WANG G L, WU Z. Study on the control surface characteristics and flight control of the high sweepback flying wing UAV[J]. Flight Dynamics, 2009, 27(6):26-29(in Chinese).
[12] 李中剑, 马东立. 飞翼布局阻力类偏航操纵装置操纵特性分析[J]. 北京航空航天大学学报, 2014, 40(5):695-700. LI Z J, MA D L. Control characteristics analysis of drag yawing control devices of flying wing configuration[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(5):695-700(in Chinese).
[13] 马超, 李林, 王立新. 大展弦比飞翼布局飞机新型操纵面设计[J]. 北京航空航天大学学报, 2007, 33(1):149-152. MA C, LI L, WANG L X. Design of innovative control surfaces of flying wing aircrafts with large ratio aspect[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(1):149-152(in Chinese).
[14] 张子军, 黎军, 李天, 等. 开裂式方向舵对某无尾飞翼布局飞机气动特性影响的实验研究[J]. 实验流体力学, 2010, 24(3):63-66. ZHANG Z J, LI J, LI T, et al. Experimental investigation of split-rudder deflection on aerodynamic performance of tailless flying wing aircraft[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(3):63-66(in Chinese).
[15] 屈晓波, 章卫国, 史静平, 等. 一种低速情况下无尾飞翼飞机航向控制方法[J]. 西北工业大学学报, 2015, 33(1):70-75. QU X B, ZHANG W G, SHI J P, et al. A yaw control method for tailless flying wing aircraft under low speed condition[J]. Journal of Northwestern Polytechnical University, 2015, 33(1):70-75(in Chinese).
[16] 王旭, 于冲, 苏新兵, 等. 开裂式方向舵在变前掠翼布局中的操纵性能研究[J]. 航空学报, 2013, 34(4):741-749. WANG X, YU C, SU X B, et al. Study of control characteristics for split rudder in variable forward swept wing configuration[J]. Acta Aeronautics et Astronautics Sinica, 2013, 34(4):741-749(in Chinese).
[17] 赵霞, 秦燕华. 一种飞翼布局横航向特性的控制研究[J]. 空气动力学学报, 2008, 26(2):234-238. ZHAO X, QIN Y H. An investigation on controlling lateral characteristics for a flying wing configuration[J]. Acta Aerodynamica Sinica, 2008, 26(2):234-238(in Chinese).
[18] 左林玄, 王晋军. 全动翼尖对无尾飞翼布局飞机气动特性影响的实验研究[J]. 空气动力学学报, 2010, 28(2):132-137. ZUO L X, WANG J J. Experimental study of the effect of AMT on aerodynamic performance of tailless flying wing aircraft[J]. Acta Aerodynamica Sinica, 2010, 28(2):132-137(in Chinese).
[19] 谢树联, 郑君若禹, 李军. 可弯折翼尖在飞翼布局中操纵性能研究[J]. 民机飞机设计与研究, 2018(1):24-33. XIE S L, ZHENG J R Y, LI J. Research on the control characteristics of the bendable wing tip in flying-wing aircraft[J]. Civil Aircraft Design & Research, 2018(1):24-33(in Chinese).
[20] 单继祥, 黄勇, 苏继川, 等. 小展弦比飞翼布局新型嵌入面航向控制特性研究[J]. 空气动力学学报, 2015, 33(3):296-301. SHAN J X, HUANG Y, SU J C, et al. Effect of the novel embedded control surfaces on direction control characteristic of low-aspect flying-wing configuration[J]. Acta Aerodynamica Sinica, 2015, 33(3):296-301(in Chinese).
[21] 李路路, 张彬乾, 李沛峰, 等. 大型客机无尾布局航向组合舵面控制技术研究[J]. 飞行力学, 2013, 31(5):450-454. LI L L, ZHANG B Q, LI P F, et al. Research on control technology of combined control surface for large tailless civil aircraft[J]. Flight Dynamics, 2013, 31(5):450-454(in Chinese).
[22] 张彬乾, 马怡, 褚胡冰, 等. 小展弦比飞翼布局航向控制的组合舵面研究[J]. 航空学报, 2013, 34(11):2435-2442. ZHANG B Q, MA Y, CHU H B, et al. Investigation on combined control surface for the yaw control of low aspect ratio flying wing configuration[J]. Acta Aeronautics et Astronautics Sinica, 2013, 34(11):2435-2442(in Chinese).
[23] 邓建, 陈斌. 线性引射阻力方向舵研究[J]. 航空科学技术, 2013, 25(1):33-36. DENG J, CHEN B. Research of linear ejector drag rudder[J]. Aeronautical Science & Technology, 2013, 25(1):33-36(in Chinese).
[24] 牟斌. 流动控制数值模拟研究[D]. 绵阳:中国空气动力研究与发展中心, 2006. MOU B. Research on numerical simulation technology of flow control[D]. Mianyang:China Aerodynamics Research and Development Center, 2006(in Chinese).
[25] 何开锋, 毛仲君, 汪清, 等. 缩比模型演示验证飞行试验及关键技术[J]. 空气动力学学报, 2017, 35(5):671-679. HE K F, MAO Z J, WANG Q, et al. Demonstration and validation flight test of scaled aircraft model and its key technologies[J]. Acta Aerodynamica Sinica, 2017, 35(5):671-679(in Chinese).
Outlines

/