In numerical simulations of industry relevant geometries, plenty of factors will more or less affect the final results, including grid type/amount/distribution, turbulence model, numerical schemes, etc. It has become meaningful to quantify the effects of factors mentioned before on the simulation results and identify important areas needing additional research and development of CFD. In order to comprehensively study the impacts of several simulation options on the drag prediction of commercial transports, numerical investigations of the NASA Common Research Model from the 6th AIAA CFD Drag Prediction Workshop are performed in this paper. The effects of grid refinement, turbulence model, inviscid flux scheme, and the gradient computation method on drag prediction are investigated. Enumeration and orthogonal design of experiment are used to provide sampling data for analysis. The factors that have important contributions are identified by the kmeans clustering analysis and Mckay main effect analysis. The gradient computation method is recognized to be a key factor for total drag prediction, and more attention is needed in simulations of similar configurations and conditions.
CHEN Jiangtao
,
ZHAO Jiao
,
ZHANG Chao
,
LIU Shenshen
,
ZHANG Yaobing
,
WU Xiaojun
. Effects of numerical simulation approaches on drag prediction of NASA CRM[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020
, 41(4)
: 123383
-123383
.
DOI: 10.7527/S1000-6893.2019.23383
[1] LEVY D W, ZICKUHR T. Data summary from the first AIAA computational fluid dynamics drag prediction workshop[J]. Journal of Aircraft, 2003, 40(5):875-882.
[2] LAFLIN K R, KLAUSMEYER S M. Data summary from second AIAA computational fluid dynamics drag prediction workshop[J]. Journal of Aircraft, 2005, 42(5):1165-1178.
[3] VASSBERG J C, TINOCO E N. Abridged summary of the third AIAA computational fluid dynamics drag prediction workshop[J]. Journal of Aircraft, 2008, 45(3):781-798.
[4] VASSBERG J C, TINOCO E N. Summary of the fourth AIAA computational fluid dynamics drag prediction workshop[J]. Journal of Aircraft, 2014, 51(4):1070-1089.
[5] LEVY D W, LAFLIN K R. Summary of data from the fifth computational fluid dynamics drag prediction workshop[J]. Journal of Aircraft, 2014, 51(4):1194-1213.
[6] TINOCOL E N, BRODERSEN O P. Summary of data from the sixth AIAA CFD drag prediction workshop:AIAA-2017-1208[R]. Reston, VA:AIAA, 2017.
[7] RUMSEY C L, ALLISON D O. CFD sensitivity analysis of a modern civil transport near buffet-onset conditions:NASA TM-2001-211263[R]. Washington, D.C.:NASA, 2001.
[8] 王运涛. DPW IV~DPW VI数值模拟技术综述[J].航空学报,2018,39(4):021836. WANG Y T. An overview of DPW IV-DPW VI numerical simulation technology[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(4):021836(in Chinese).
[9] 王运涛,孟德虹. CRM-WB风洞模型高阶精度数值模拟[J].航空学报,2018,39(4):121642. WANG Y T, MENG D H. High-order numerical simulation of CRM-WB wind tunnel method[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(4):121642(in Chinese).
[10] 李伟,孟德虹.网格拓扑对DLR-F6构型数值模拟的影响[J].航空学报,2017,38(2):120177. LI W, MENG D H. Effect of mesh topology on numerical simulation of DLR-F6 configuration[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2):120177(in Chinese).
[11] 张培红,张耀冰.面向混合网格高精度阻力预测的梯度求解方法[J].航空学报, 2018, 39(1):121415. ZHANG P H, ZHANG Y B. Gradient calculation method of unstructured mixed grids for improving drag prediction accuracy[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):121415(in Chinese).
[12] 张培红,张耀冰.面向混合网格高精度阻力预测的熵修正方法[J].航空学报, 2018, 39(9):122019. ZHANG P H, ZHANG Y B. Entropy correction method of unstructured mixed grids for improving drag prediction accuracy[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(9):122019(in Chinese).
[13] VASSBERG J C, DEHAAN M A. Development of a common research model for applied CFD validation studies:AIAA-2008-6919[R]. Reston, VA:AIAA, 2008.
[14] RIVERS M, DITTBERNER A. Experimental investigations of the NASA common research model:AIAA-2010-4218[R]. Reston, VA:AIAA, 2010.
[15] RIVERS M, DITTBERNER A. Experimental investigations of the NASA common research model in the NASA Langley National Transonic Facility and NASA Ames 11-Ft transonic wind tunnel:AIAA-2011-1126[R]. Reston, VA:AIAA, 2011.
[16] European Commission. European strategic wind tunnels improved research potential[EB/OL].(2014-10-30)[2016-11-23]. http://www.eswirp.aero/.
[17] CHEN J T, ZHANG Y B, ZHOU N C, et al. Numerical investigations of the high-lift configuration with MFlow solver[J]. Journal of Aircraft, 2015, 52(4):1051-1062.
[18] DISKIN B, THOMAS J L. Comparison of node-centered and cell-centered unstructured finite volume discretizations:Inviscid fluxes[J]. AIAA Journal, 2011, 49(4):836-854.
[19] MAVRIPLIS D J. Revisiting the least-squares procedure for gradient reconstruction on unstructured meshes:AIAA-2003-3986[R]. Reston, VA:AIAA, 2003.
[20] ROE P L. Approximate Riemann solvers[J]. Journal of Computational Physics,1981, 135(2):250-258.
[21] KIM K H, KIM C, RHO O H. Accurate computations of hypersonic flows using AUSMPW+scheme and shock aligned grid technique:AIAA-1998-2442[R]. Reston, VA:AIAA, 1998.
[22] TRAMEL R W, NICHOLS R H. Addition of improved shock-capturing schemes to OVERFLOW 2.1:AIAA-2009-3988[R]. Reston, VA:AIAA, 2009.
[23] SPALART P R, ALLMARAS S R. A one-equation turbulence model for aerodynamic flows:AIAA-1992-0439[R]. Reston, VA:AIAA, 1992.
[24] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605.
[25] SPALART P R. Strategies for turbulence modelling and simulation[J]. International Journal of Heat and Fluid Flow, 2000, 21:252-263.
[26] MANI M, BABCOCK D A, WINKLER C M, et al. Predictions of a supersonic turbulent flow in a square duct:AIAA-2013-0860[R]. Reston, VA:AIAA, 2013.
[27] SCLAFANI A J, VASSBERG J C, RUMSEY C, et al. Drag prediction for the NASA CRM wing/body/tail using CFL3D and OVERFLOW on an overset mesh:AIAA-2010-4219[R]. Reston, VA:AIAA, 2010.
[28] YAMAMOTO K, TANAKA K, MURAYAMA M. Effect of a nonlinear constitutive relation for turbulence modeling on predicting flow separation at wing-body juncture of transonic commercial aircraft:AIAA-2012-2895[R]. Reston, VA:AIAA, 2012.
[29] ARTHUR D, VASSILVITSKII S. K-means++:The advantages of careful seeding[M]//SODA'07:Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 2007:1027-1035.
[30] 田口玄一.试验设计法(上)[M].北京:机械工业出版社,1987. GENICHI T. Experimental design method (part 1)[M]. Beijing:Machinery Industry Press, 1987(in Chinese).
[31] 茆诗松,周纪芗,陈颖主.试验设计[M]. 2版.北京:中国统计出版社,2012. MAO S S, ZHOU J X, CHEN Y Z. Experimental design[M]. 2nd ed. Beijing:China Statistics Press, 2012(in Chinese).