This paper addresses the various modeling errors and external disturbances in the process of aerial refueling and the difficulty of manual parameter setting of Active Disturbance Rejection Controller (ADRC) controllers. A Variable Weighted Mutant Pigeon Inspired Optimization (VWMPIO) algorithm for ADRC designed for Unmanned Aerial Vehicle (UAV) is proposed. First of all, this paper establishes a six degree-of-freedom UAV model and then designs an attitude controller based on the ADRC structure. On this basis, parameters of the controller are tuned with the VWMPIO algorithm proposed in this paper, and a comparison amongst the VWMPIO algorithm, the basic PIO algorithm, and the PSO optimization algorithms. In addition, the ADRC controller is compared with the traditional Proportional-Integral-Differential (PID) controller in terms of control performance and anti-noise performance. The experimental result shows that the proposed method can improve the control accuracy and disturbance rejection performance of UAV aerial refueling in complex situations.
FEI Lun
,
DUAN Haibin
,
XU Xiaobin
,
BAO Rui
,
SUN Yongbin
. ADRC controller design for UAV based on variable weighted mutant pigeon inspired optimization[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020
, 41(1)
: 323490
-323490
.
DOI: 10.7527/S1000-6893.2019.23490
[1] 全权,魏子博,高俊,等.软管式自主空中加油对接阶段中的建模与控制综述[J].航空学报,2014, 35(9):2390-2410. QUAN Q, WEI Z B, GAO J, et al. A survey on modeling and control problems for probe and drogue autonomous aerial refueling at docking stage[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9):2390-2410(in Chinese).
[2] NICOL C, MACNAB C J B, RAMIREZ-SERRANO A. Robust adaptive control of a quadrotor helicopter[J]. Mechatronics, 2011, 21(6):927-938.
[3] ENOMOTO K, YAMASAKI T, TAKANO H, et al. Guidance and control system design for chase UAV[C]//Proceedings of GN & C Conference, 2008:440-453.
[4] LUNGU M. Auto-landing of fixed wing unmanned aerial vehicles using the back-stepping control[J/OL]. ISA Transactions.(2019-5-29)[2019-08-25].http://doi.org/10.1016/j.isatra.2019.05.019.
[5] 韩京清.自抗扰控制器及其应用[J].控制与决策,1998,13(1):19-23. HAN J Q. Auto-disturbances-rejection controller and its applications[J]. Control and Decision, 1998, 13(1):19-23(in Chinese).
[6] 孙亮, 吴根忠. 自抗扰控制器优化设计及其应用[J].电机与控制应用, 2010, 37(3):26-30. SUN L, WU G Z. Application and optimize design of active disturbance rejection controller[J]. Electric Machines & Control Application, 2010, 37(3):26-30(in Chinese).
[7] 杨立本, 章卫国, 黄得刚.基于ADRC姿态解耦的四旋翼飞行器鲁棒轨迹跟踪[J].北京航空航天大学学报, 2015, 41(6):1026-1033. YANG L B, ZHANG W G, HUANG D G. Robust trajectory tracking for quadrotor aircraft based on ADRC attitude decoupling control[J].Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(6):1026-1033(in Chinese).
[8] 吴超, 王浩文, 张玉文, 等.基于LADRC的无人直升机轨迹跟踪[J].航空学报, 2015, 36(2):473-483. WU C, WANG H W, ZHANG Y W, et al. LADRC based trajectory tracking for unmanned helicopter[J].Acta Aeronautica et Astronautica Sinica, 2015, 36(2):473-483(in Chinese).
[9] SU Z, WANG H, YAO P, et al. Back-stepping based anti-disturbance flight controller with preview methodology for autonomous aerial refueling[J]. Aerospace Science and Technology, 2017, 61:95-108.
[10] FU C, TIAN Y, PENG C, et al. Path tracking control for eight-rotor aircraft based on linear ADRC algorithm[C]//2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA). Piscataway, NJ:IEEE Press, 2016:2147-2152.
[11] 叶孝璐, 俞立, 张文安, 等. 基于串级ADRC的四旋翼飞行器悬停控制[J]. 中南大学学报(自然科学版), 2017, 48(8):2079-2087. YE X L, YU L, ZHANG W A, et al. Cascade ADRC-based hover control for quadrotor air vehicles[J]. Journal of Central South University (Science and Technology), 2017, 48(8):2079-2087(in Chinese).
[12] DUAN H B, QIAO P. Pigeon-inspired optimization:A new swarm intelligence optimizer for air robot path planning[J]. International Journal of Intelligent Computing and Cybernetics, 2014, 7(1):24-37.
[13] DUAN H B, QIU H. Advancements in pigeon-inspired optimization and its variants[J]. Science China Information Sciences, 2019, 62(7):5-14.
[14] LI C, DUAN H B. Target detection approach for UAVs via improved Pigeon-inspired optimization and edge potential function[J]. Aerospace Science and Technology, 2014, 39:352-360.
[15] ZHANG S, DUAN H. Gaussian pigeon-inspired optimization approach to orbital spacecraft formation reconfiguration[J]. Chinese Journal of Aeronautics, 2015, 28(1):200-205.
[16] 段海滨,杨之元.基于柯西变异鸽群优化的大型民用飞机滚动时域控制[J].中国科学:技术科学, 2018, 48(3):277-288. DUAN H B, YANG Z Y. Large civil aircraft receding horizon control based on Cauthy mutation pigeon inspired optimization[J]. SCIENTIA SINICA Technologica, 2018, 48(3):277-288(in Chinese).
[17] 高志强.自抗扰控制思想探究[J].控制理论与应用, 2013, 30(12):1498-1510. GAO Z Q. On the foundation of active disturbance rejection control[J]. Control Theory & Applications, 2013, 30(12):1498-1510. (in Chinese)
[18] 沈伋, 韩丽川, 沈益斌. 基于粒子群算法的飞机总体参数优化[J]. 航空学报, 2008,29(6):1538-1541. SHEN J, HAN L C, SHEN Y B. Optimization of airplane primary parameters based on particle swarm algorithm[J].Acta Aeronautica et Astronautica Sinica, 2008, 29(6):1538-1541(in Chinese).
[19] 段海滨, 张祥银, 徐春芳. 仿生智能计算[M]. 北京:科学出版社, 2011:67-70. DUAN H B, ZHANG X Y, XU C F. Bio-inspired Computing[M]. Beijing:Science Press, 2011:67-70(in Chinese).
[20] 王丽君, 李擎, 童朝南, 等. 时滞系统的自抗扰控制综述[J]. 控制理论与应用, 2016, 30(12):1521-1533. WANG L J, LI Q, TONG C N, et al. Overview of active disturbance rejection control for systems with time-delay[J]. Control Theory & Applications, 2013, 30(13):1521-1533(in Chinese).
[21] HOU G, HUANG Y, DU H, et al. Design of internal model controller based on ITAE index and its application in boiler combustion control system[C]//2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA). Piscataway, NJ:IEEE Press, 2017:2078-2083.