Fluid Mechanics and Flight Mechanics

Study on frequency characteristics of oxygen feed system based on gas jet and condensation

  • ZHANG Miao ,
  • LI Bin ,
  • XING Lixiang
Expand
  • 1. Xi'an Aerospace Propulsion Institute, Xi'an 710100, China;
    2. Science and Technology on Liquid Rocket Engine Laboratory, Xi'an 710100, China;
    3. Academy of Aerospace Propulsion Technology, Xi'an 710100, China

Received date: 2019-08-20

  Revised date: 2019-09-25

  Online published: 2019-10-17

Supported by

National Basic Research Program of China (613321)

Abstract

Based on the one-dimensional thermodynamic disequilibrium two-fluid six-equation model, the condensation of gas jet is simulated. The simulation happens in the pipeline between pumps of the liquid oxygen/kerosene staged combustion cycle rocket engine system, obtaining the characteristic parameters along pipeline flow direction. Firstly, based on Rayleigh-Plesset equation and the characteristics of gas jet and condensation distribution, a transfer function model is established. The condensation model with liquid oxygen pipeline, pump, and other component models are solved simultaneously, and the frequency characteristics of oxygen pipeline system of the engine are analyzed. Secondly, the influence of gas jet and condensation process on the frequency characteristics of the oxygen feed system at different inlet pressure levels and liquid oxygen temperature boundary conditions are studied. The simulation results show that the high inlet pressure and subcooling liquid oxygen changes the inertia and flexibility of jet bubble, and increases the characteristic frequency of the oxygen feed system. The engine firing test results under different boundary conditions show that increasing the oxygen feed system inlet pressure or decreasing the liquid oxygen temperature increases the frequency of oxygen feed system from 8.3 Hz to 11 Hz. The result is consistent with the numerical simulation results, verifying that gas jet and condensation of pump pipeline is an important process affecting the frequency characteristics of the oxygen feed system.

Cite this article

ZHANG Miao , LI Bin , XING Lixiang . Study on frequency characteristics of oxygen feed system based on gas jet and condensation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(2) : 123393 -123393 . DOI: 10.7527/S1000-6893.2019.23393

References

[1] 李斌, 杜大华, 张贵田, 等. 液氧/煤油补燃发动机低频频率特性研究[J].航空动力学报, 2009, 24(5):1187-1191. LI B, DU D H, ZHANG G T, et al. Research on the low frequency characteristics of LOX/kerosene staged combustion cycle engine[J]. Journal of Aerospace Power, 2009, 24(5):1187-1191(in Chinese).
[2] 张贵田. 高压补燃循环发动机[M]. 北京:国防工业出版社,2005:250-251. ZHANG G T. High pressure staged combustion LOX/kerosene rocket engine[M]. Beijing:National Defense Industry Press, 2005:250-251(in Chinese).
[3] KERNEY P J, FAETH G M, OLSON D R. Penetration characteristics of a submerged steam jet[J]. AIChE Journal, 1972, 18(5):548-553.
[4] WEIMER J C, FAETH G M, OLSON D R. Penetration of vapor jets submerged in subcooled liquids[J]. AIChE Journal, 1973, 19(3):552-558.
[5] WU X Z, YAN J J, SHAO S F, et al. Experimental study on the condensation of supersonic steam jet submerged in quiescent subcooled water:Steam plume shape and heat transfer[J]. International Journal of Multiphase Flow, 2007, 33(12):1296-1307.
[6] 武心壮,邱斌斌,种道彤, 等. 单喷嘴蒸汽射流凝结引起的压力振荡研究[J]. 西安交通大学学报,2014, 48(1):48-52. WU X Z, QIU B B, CHONG D T, et al. Pressure oscillation induced by steam jet condensation in water through a nozzle[J]. Journal of Xi'an Jiaotong University, 2014, 48(1):48-52(in Chinese).
[7] 武心壮,严俊杰,潘冬冬, 等. 过膨胀超音速蒸汽射流的一种流形及其换热研究[J]. 工程热物理学报,2010, 31(12):2031-2034. WU X Z, YAN J J, PAN D D, et al. Experimental study of over-expanded supersonic steam jet in subcooled water[J]. Journal of Engineering Thermophysics, 2010, 31(12):2031-2034(in Chinese).
[8] PILIPENKO V V, DOROSH I L, MANKO I K. 气氧束流进入液氧主流时的气体凝结实验[J]. 李向阳,译. 研制动态, 2014, 335(8):1-3. PILIPENKO V V, DOROSH I L, MANKO I K. Experimental research on vapor condensation of oxygen vapor inject into LOX mainstream[J]. LI X Y, translated. Development Information, 2014, 335(8):1-3(in Chinese).
[9] LI S Q, WANG P, LU T. Numerical simulation of direct contact condensation of subsonic steam injected in a water pool using VOF method and LES turbulence model[J]. Progress in Nuclear Energy, 2015, 78:201-215.
[10] SHAH A, CHUGHTAI I R, INAYAT M H. Numerical simulation of direct-contact condensation from a supersonic steam jet in subcooled water[J]. Chinese Journal of Chemical Engineering, 2010, 18(4):577-587.
[11] 宋纪元,陈听宽. 汽液两相临界流动的热力学非平衡两流体模型[J]. 核科学与工程, 1997, 17(3):193-201. SONG J Y, CHEN T K. A non-equilibrium two-fluid model for prediction two-phase critical flow[J]. Chinese Journal of Nuclear Science and Engineering, 1997, 17(3):193-201(in Chinese).
[12] 张小英,丁斐,陈佳跃. 反应堆一维两流体模型二阶精度数值解法研究[J]. 核动力工程,2013,34(4):27-32. ZHANG X Y, DING F, CHEN J Y. Study on second-order scheme for one-dimensional two-fluid model of reactor[J]. Nuclear Power Engineering, 2013,34(4):27-32(in Chinese).
[13] 李伟, 苏光辉, 秋穗正, 等. 一种稳定性增强及高精度数值方法在RELAP5中的实现与评价[J]. 核技术,2016, 39(11):110601. LI W, SU G H, QIU S Z, et al. Implementation and assessment of a stability-enhancing and high-resolution numerical scheme in RELAP5[J]. Nuclear Techniques, 2016, 39(11):110601(in Chinese).
[14] 巢飞, 单建强, 张勇, 等. 两流体双压力模型半隐数值算法研究[J]. 核动力工程, 2018, 39(2):142-148. CHAO F, SHAN J Q, ZHANG Y, et al. Study on semi-implicit scheme for two-fluid seven-equation two-pressure model[J]. Nuclear Power Engineering, 2018, 39(2):142-148(in Chinese).
[15] 陈二锋,厉彦忠,应媛媛. 泵间管气液两相流压力波传播速度数值研究[J]. 航空动力学报, 2010, 25(4):754-760. CHEN E F, LI Y Z, YING Y Y. Numerical investigation on pressure wave propagation speed of gas-liquid two-phase flow in pump pipeline[J]. Journal of Aerospace Power, 2010, 25(4):754-760(in Chinese).
[16] 薛帅杰,刘红军,洪流,等. 厚液膜敞口型离心喷嘴自激振荡特性试验[J]. 航空学报, 2018, 39(9):122189. XUE S J, LIU H J, HONG L, et al. Test on self-excited oscillation characteristics of an open-end swirl injector with thick liquid film[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(9):122189(in Chinese).
[17] 张国渊,党佳琦,赵伟刚,等. 高速水润滑机械密封的两相流热振动现象[J]. 航空学报, 2019, 40(3):422532. ZHANG G Y, DANG J Q, ZHAO W G, et al. Two-phase flow thermal vibration phenomenon of high-speed water-lubricated mechanical seal[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3):422532(in Chinese).
[18] 邢理想,杜大华,李斌. 液氧/煤油补燃循环发动机氧路低频动特性分析[J]. 火箭推进, 2009, 35(5):24-28. XING L X, DU D H, LI B. Low frequency characteristics analysis of LOX/kerosene staged combustion cycle rocket engine[J]. Journal of Rocker Propulsion, 2009, 35(5):24-28(in Chinese).
[19] 刘上,刘红军,陈宏玉. 液体火箭发动机热力组件动力学模型[J]. 宇航学报,2012, 33(10):1512-1518. LIU S, LIU H J, CHEN H Y. Dynamics models for the combustor component in liquid rocket engine[J]. Journal of Astronautics, 2012, 33(10):1512-1518(in Chinese).
[20] 张青松,张兵. 大型液体运载火箭POGO动力学模型研究[J]. 中国科学:技术科学, 2014, 44(5):525-531. ZHANG Q S, ZHANG B. POGO dynamic model research for liquid launch vehicles[J]. Scientia Sinica(Technologica), 2014, 44(5):525-531(in Chinese).
[21] 朱平平,潘辉,黄辉,等. 氧输送管路动态水试仿真分析[J]. 导弹与航天运载技术, 2015(1):66-68. ZHU P P, PAN H, HUANG H, et al. Simulating analysis of liquid oxygen pipe dynamic test with water[J]. Missiles and Space Vehicles, 2015(1):66-68(in Chinese).
[22] 卢义玉,葛兆龙,李晓红. 空化空泡发育和溃灭过程的数值分析[J]. 中国矿业大学学报, 2009, 38(4):582-585. LU Y Y, GE Z L, LI X H. Numerical analysis on growth and collapse of cavitation bubble[J]. Journal of China University of Mining & Technology, 2009, 38(4):582-585(in Chinese).
[23] 徐济鋆. 沸腾传热和气液两相流[M]. 北京:原子能出版社,2000:120-121. XU J Y. Boiling heat transfer and gas-liquid two-phase flow[M]. Beijing:Atomic Energy Press, 2000:120-121(in Chinese).
Outlines

/