[1] PEIGIN S,朱自强,EPSTEIN B.可应用于民机空气动力设计中的数值优化方法[J].航空学报,2014,35(1):58-69. PEIGIN S, ZHU Z Q, EPSTEIN B. Applicable numerical optimization methods for aerodynamic design of civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1):58-69(in Chinese).
[2] 周铸,黄江涛,高正红,等.民用飞机气动外形数值优化设计面临的挑战与展望[J].航空学报,2019,40(1):522370. ZHOU Z, HUANG J T, GAO Z H, et al. Challenges and prospects of numerical optimization design for large civil aircraft aerodynamic shape[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522370(in Chinese).
[3] 韩忠华,张瑜,许晨舟,等.基于代理模型的大型民机机翼气动优化设计[J].航空学报,2019,40(1):522398. HAN Z H,ZHANG Y,XU C Z, et al. Aerodynamic optimization design of large civil aircraft wings using surrogate-based model[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522398(in Chinese).
[4] SHANKARAN S, JAMESON A, MARTINELLI I. Continuous adjoint method for unstructured grids[J]. AIAA Journal, 2008, 46(5):226-239.
[5] PALACIOS F, ECONOMON T D, ARANAKE A C, et al. Stanford University Unstructured(SU2):Open-source analysis and design technology for turbulent flows:AIAA-2014-0243[R]. Reston:AIAA, 2014.
[6] PALACIOS F, ECONOMON T D, ARANAKE A C, et al. Stanford University Unstructured (SU2):An open-source integrated computational environment for multi-physics simulation and design:AIAA-2013-0287[R]. Reston:AIAA, 2013.
[7] LE D S T, HERLING W W, FATTA U J,et al. MDOPT-a multidisciplinary design optimization system using high order analysis codes:AIAA-2004-4567[R]. Reston:AIAA, 2004.
[8] NIELSEN E J,DISKIN B, YAMALEEV N K. Discrete adjoint-based design optimization of unsteady turbulent flows on dynamic unstructured grids[J]. AIAA Journal, 2010, 48(6):1195-1206.
[9] PARK M A. Low boom configuration analysis with FUN-3D adjoint simulation framework:AIAA-2011-3337[R]. Reston:AIAA, 2011.
[10] BREZILLON J,DWIUHT R P. Aerodynamic shape optimization using the discrete adjoint of the Navies-Stokes equations:Applications towards complex 3D configurations[C]//Proceedings of the CEAS/KATnet Conference on Key Aerodynamic Technologies, 2009.
[11] WIDHALM M A, HEPPERLE M. Comparison between gradient free and adjoint based aerodynamic optimization of a flying wing transport aircraft in the preliminary design[C]//AIAA 25th Applied Aerodynamics Conference. Reston:AIAA, 2007.
[12] CARRIER G, DESTARAC D, DUMONT A, et al. Gradient-based aerodynamic optimization with the e1sA software; AIAA-2014-0568[R]. Reston:AIAA, 2014.
[13] DUMONT A, LE PAPE A, PETER J,et al. Aerodynamic shape optimization of hovering rotors using a discrete adjoint of the Reynolds-averaged Navier-Stokes equadons[J]. Journal of the American Helicopter Society, 2011,56(3):1-11.
[14] HUANG J T, ZHOU Z, GAO Z H. Aerodynamic multi-objective integrated optimization based on principal component analysis[J]. Chinese Journal of Aeronautics, 2017, 30(4):1336-1348.
[15] 马晓永,范召林,吴文华,等.基于NURBS方法的机翼气动外形优化[J]. 航空学报,2011, 32(9):1616-1621. MA X Y, FAN Z L,WU W H,et al. Aerodynamic shape optimization for wing based on NURBS[J]. Acta Aeronautica et Astronautica Sinica, 2011,32(9):1616-1621(in Chinese).
[16] 李彬,邓有奇,唐静,等.基于三维非结构混合网格的离散伴随优化方法[J].航空学报,2014, 35(3):674-686. LI B, DENG Y Q, TANG J,et al. Discrete adjoint optimization method for 3D unstructured grid[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3):674-686(in Chinese).
[17] 李静,高正红,赵柯.基于直接控制FFD参数化方法的跨声速层流翼身组合体稳健性设计[J].中国科学技术科学,2015,45(9):964-974. LI J,GAO Z H, ZHAO K. Robust design of transonic laminar wingbody configuration based on direct manipulated FFD technique[J]. Scientia Sinica Technologica, 2015,45(9):964-974(in Chinese).
[18] 白俊强,雷锐午,杨体浩,等.基于伴随理论的大型客机气动优化设计研究进展[J].航空学报,2019,40(1):522642. BAI J Q, LEI R W, YANG T H, et al. Progress of adjoint-based aerodynamic optimization design for large civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522642(in Chinese).
[19] 韩忠华. Kriging模型及代理优化算法研究进展[J].航空学报,2016, 37(11):3197-3225. HAN Z H. Kriging surrogate model and its application to design optimization:A review of recent progress[J]. Acta Aeronautics et Astronautica Sinica, 2016, 37(11):3197-3225(in Chinese).
[20] 赵童,张宇飞,陈海昕,等.面向三维机翼性能的超临界翼型优化设计方法[J].中国科学,2015, 45(10):89-101. ZHAO T, ZHANG Y F, CHEN H X,et al. Aerodynamics optimization method of supercritical airfoil geared to the performance of swept and tapered wing[J]. Scientia Sinica Technologica, 2015, 45(10):89-101(in Chinese).
[21] 招启军,张威,原昕,等.共轴刚性旋翼气动外形优化设计[J].南京航空航天大学学报,2019,51(2):160-165. ZHAO Q J, ZHANG W, YUAN X, et al. Optimization design of coaxial rotor aerodynamic planform[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2019, 51(2):160-165(in Chinese).
[22] 唐智礼,黄明烙.基于控制理论的Euler方程翼型减阻优化设计[J].空气动力学学报,2001, 19(3):262-270. TANG Z L,HUANG M K. Control theory based airfoil design using Euler equations[J]. Acta Aerodynamica Sinica, 2001,19(3):262-270(in Chinese).
[23] 杨洋,欧阳绍修,刘学强,等.基于伴随算子的跨声速机翼气动优化设计[J].南京航空航天大学学报,2013, 45(3):347-352. YANU Y, OUYANU S X, LIU X Q, et al. Aerodynamic optimization o1 transonic wing using discrete adjoint operator[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2013,45(3):347-352(in Chinese).
[24] 魏闯,张铁军,刘铁中.通用飞机富勒襟翼多目标优化[J].空气动力学学报,2017,35(4):572-578. WEI C, ZHANG T J, LIU T Z. Multi-objective optimization of Fowler flap on general aircraft[J]. Acta Aerodynamica Sinica, 2017,35(4):572-578(in Chinese).
[25] KULFAN B M, BUSSOLETTI J E. Fundamental parametric geometry representations for aircraft component shapes[C]//AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston:AIAA,2006.
[26] KULFAN B M. Universal parametric geometry representation method[J]. Journal of Aircraft, 2008, 45(1):142-158.
[27] HICKS R M, HENNE P A. Wing design by numerical optimization[J]. Journal of Aircraft, 1978,15(7):407-412.
[28] SEDERBERG T, PARRY S. Free-form deformation of solid geometric models[C]//Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques, 1986.
[29] 陈颂,白俊强,孙智伟,等.基于DFFD技术的翼型气动优化设计[J].航空学报,2014,35(3):695-705. CHEN S, BAI J Q, SUN Z W,et al. Aerodynamic optimization design of airfoil using DFFD technique[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3):695-705.
[30] BOER A, SCHOOT M S, FACULTY H B. Mesh deformation based on radial basis function interpolation[J]. Computers and Structures, 2007,85:784-795.
[31] 林言中, 陈兵, 徐旭. 径向基函数插值方法在动网格技术中的应用[J]. 计算物理, 2012, 29(2):191-197. LIN Y Z, CHEN B, XUN X. Radial basis function interpolation in moving mesh technique[J]. Chinese Journal of Computational Physics 2012, 29(2):191-197(in Chinese).
[32] RENDALL T C S, ALLEN C B. Efficient mesh motion usi-ng radial basis functions with data reduction algorithms[J]. Journal of Computational Physics, 2009, 228(5):6231-6249.
[33] LIU Y, WANG L, QIAN Z S. Numerical investigation on the assistant restarting method of variable geometry for high Mach number inlet[J]. Aerospace Science and Technology, 2018,79:647-657.
[34] LENG Y, QIAN Z S. Sonic boom signature analysis for a type of hypersonic long-range civil vehicle:AIAA-2017-2244[R].Reston:AIAA,2017.
[35] XIANG X H, LIU Y, QIAN Z S. Investigation of a wide range adaptable hypersonic dual-waverider integrative design method based on two different types of 3D inward-turning inlets:AIAA-2017-2110[R].Reston:AIAA,2017.
[36] QIAN Z S, ZHANG J B, LEE C H. Preconditioned pseudo-compressibility methods for three-dimensional incompressible Navier-Stokes equations:AIAA-2016-3967[R].Reston:AIAA, 2016.
[37] LI H M, QIAN Z S. Implementation of three different transition methods and comparative analysis of the results computed by OVERSET software:AIAA-2016-3491[R]. Reston:AIAA, 2016.
[38] QIAN Z S, LEE C H. HLLC scheme for the preconditioned pseudo-compressibility Navier-Stokes equations for incompressible viscous flows[J]. International Journal of Computational Fluid Dynamics, 2015,29(6-8):400-410.
[39] XIANG X H, LIU Y, QIAN Z S. Aerodynamic design and numerical simulation of over-under turbine-based combined-cycle (TBCC) inlet mode transition[C]//Proceeding of 2014 Asia-Pacific International Symposium on Aerospace Technology, 2014.
[40] LI X F, QIAN Z S. Applications of overset grid technique to CFD simulation of high Mach number multi-body interaction/separation flow[C]//Proceeding of 2014 Asia-Pacific International Symposium on Aerospace Technology, 2014.
[41] QIAN Z S, ZHANG J B. Implicit preconditioned high-order compact scheme for the simulation of the three-dimensional incompressible Navier-Stokes equations with pseudo-compressibility method[J]. International Journal for Numerical Methods in Fluids,2012, 69(7):1165-1185.
[42] 2nd AIAA CFD drag prediction workshop[EB/OL].(2019-08-10)[2019-08-12].https://aiaa-dpw.larc.nasa.gov/Workshop2/
[43] HAN Z H, ZHANG Y, SONG C X, et al. Weighted gradient-enhanced Kriging for high-dimensional surrogate modelling and design optimization[J]. AIAA Journal, 2017, 55(12):4330-4346.
[44] HAN Z H, ABU-ZURAYK M, GÖRTZ S, et al. Surrogate-based, aerodynamic shape optimization of a wing-body transport aircraft configuration[M]. Berlin:Springer, 2018, 138:257-282.
[45] ZHANG Y, HAN Z H, ZHANG K S. Variable-fidelity expected improvement method for efficient global optimization of expensive functions[J]. Structural and Multidisciplinary Optimization, 2018, 58(4):1431-1451.
[46] 乔建领, 韩忠华, 宋文萍. 基于代理模型的高效全局低音爆优化设计方法[J]. 航空学报, 2018, 39(5):121736. QIAO J L, HAN Z H, SONG W P. An efficient surrogate-based global optimization for low sonic boom design[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):121736(in Chinese).
[47] HAN Z H, CHEN J, ZHANG K S, et al. Aerodynamic shape optimization of natural-laminar-flow wing using surrogate-based approach[J]. AIAA Journal, 2018, 56(7):2579-2593.