[1] 范玉青, 梅中义, 陶剑. 大型飞机数字化制造工程[M]. 北京:航空工业出版社, 2011:26-35. FAN Y Q, MEI Z Y, TAO J. Digital manufacturing engineering of large aircraft[M]. Beijing:Aviation Industry Press, 2011:26-35(in Chinese).
[2] 王黎明, 冯潼能. 数字化自动钻铆技术在飞机制造中的应用[J]. 航空制造技术, 2008(11):42-45. WANG L M, FENG T N. Application of digital automatic drill-riveting technology in aircraft manufacture[J]. Aeronautical Manufacturing Technology, 2008(11):42-45(in Chinese).
[3] 康仁科, 杨国林, 董志刚, 等. 飞机装配中的先进制孔技术与装备[J]. 航空制造技术, 2016, 59(10):16-24. KANG R K, YANG G L, DONG Z G, et al. Advanced hold machining technology and equipment for aircraft assembly[J]. Aeronautical Manufacturing Technology, 2016, 59(10):16-24(in Chinese).
[4] 王欢. 钛合金螺旋铣孔试验研究[D]. 大连:大连理工大学, 2015. WANG H. Experimental study on helical milling of titanium alloy[D]. Dalian:Dalian University of Technology, 2015(in Chinese).
[5] WHINNEM E. Development and deployment of orbital drilling at Boeing:2006-01-3152[R]. SAE Transactions, 2006.
[6] WHINNEM E, LIPCZYNSKI G, ERIKSSON I. Development of orbital drilling for the Boeing 787[J]. SAE International Journal of Aerospace, 2008, 1:811-816.
[7] PEREIRA R B D, BRANDÃO L C, PAIVA A P D, et al. A review of helical milling process[J]. International Journal of Machine Tools and Manufacture, 2017, 120:27-48.
[8] 秦旭达, 陈仕茂, 刘伟成, 等. 螺旋铣孔技术在航空制造装配业中的发展应用[J]. 航空制造技术, 2009(6):58-60. QIN X D, CHEN S M, LIU W C, et al. Development and application of hole helical milling technology in aviation manufacturing assembly industry[J]. Aeronautical Manufacturing Technology, 2009(6):58-60(in Chinese).
[9] 李忠群, 郑敏, 王鑫. 螺旋铣孔技术研究进展[J]. 湖南工业大学学报, 2013, 27(1):38-42. LI Z Q, ZHENG M, WANG X. Research progress of helical milling technology[J]. Journal of Hunan University of Technology, 2013, 27(1):38-42(in Chinese).
[10] 谢海龙. C/E复合材料螺旋铣孔技术研究[D]. 大连:大连理工大学, 2016. XIE H L. The Research of helical milling of C/E composites[D]. Dalian:Dalian University of Technology, 2016(in Chinese).
[11] DENKENA B, BOEHNKE D, DEGE J H. Helical milling of CFRP-titanium layer compounds[J]. CIRP Journal of Manufacturing Science and Technology, 2008, 1(2):64-69.
[12] BRINKSMEIER E, FANGMANN S, MEYER I. Orbital drilling kinematics[J]. Production Engineering, 2008, 2(3):277-283.
[13] BRINKSMEIER E, FANGMANN S, RENTSCH R. Drilling of composites and resulting surface integrity[J]. CIRP Annals-Manufacturing Technology, 2011, 60(1):57-60.
[14] VOSS R, HENERICHS M, KUSTER F. Comparison of conventional drilling and orbital drilling in machining carbon fibre reinforced plastics (CFRP)[J]. CIRP Annals-Manufacturing Technology, 2016, 65(1):137-140.
[15] REY P A, LEDREF J, SENATORE J, et al. Modelling of cutting forces in orbital drilling of titanium alloy Ti-6Al-4V[J]. International Journal of Machine Tools and Manufacture, 2016, 106:75-88.
[16] WANG H Y, QIN X D. A mechanistic model for cutting force in helical milling of carbon fiber-reinforced polymers[J]. The International Journal of Advanced Manufacturing Technology, 2016, 82(9-12):1485-1494.
[17] 许君. C/E复合材料螺旋铣孔加工试验研究[D]. 大连:大连理工大学, 2017. XU J. The research on helical milling experiments of C/E composites[D]. Dalian:Dalian University of Technology, 2017(in Chinese).
[18] OZTURK O M, KILIC Z M, ALTINTAS Y. Mechanics and dynamics of orbital drilling operations[J]. International Journal of Machine Tools and Manufacture, 2018, 129:37-47.
[19] LI Z Q, LIU Q, MING X, et al. Cutting force prediction and analytical solution of regenerative chatter stability for helical milling operation[J]. The International Journal of Advanced Manufacturing Technology, 2014, 73(1-4):433-442.
[20] LI Z L, DING Y, ZHU L M. Accurate cutting force prediction of helical milling operations considering the cutter runout effect[J]. International Journal of Advanced Manufacturing Technology, 2017, 92:4133-4144.
[21] ZHOU L, DONG H Y, KE Y L, et al. Modeling of non-linear cutting forces for dry orbital drilling process based on undeformed chip geometry[J]. The International Journal of Advanced Manufacturing Technology, 2017, 94:203-216.
[22] LIU J, CHEN G, JI C H, et al. An investigation of workpiece temperature variation of helical milling for carbon fiber reinforced plastics (CFRP)[J]. International Journal of Machine Tools and Manufacture, 2014, 86:89-103.
[23] LIU J, REN C Z, QIN X D, et al. Prediction of heat transfer process in helical milling[J]. The International Journal of Advanced Manufacturing Technology, 2014, 72(5-8):693-705.
[24] 刘婕. CFRP/钛合金叠层材料螺旋铣孔切削热分析与温度预测[D]. 天津:天津大学, 2014. LIU J. Study on cutting heat and temperature prediction in helical milling for CFRP/Titanium[D]. Tianjin:Tianjin University, 2014(in Chinese).
[25] ZHOU L, KE Y L, DONG H Y, et al. Hole diameter variation and roundness in dry orbital drilling of CFRP/Ti stacks[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87:811-824.
[26] 李士鹏, 田利成, 秦旭达, 等. 基于螺旋铣孔柔性切削力建模的孔径误差补偿[J]. 天津大学学报(自然科学与工程技术版), 2017,50(2):147-153. LI S P, TIAN L C, QIN X D, et al. Diameter error compensation based on flexible cutting force model in hole helical milling process[J]. Journal of Tianjin University (Science and Technology), 2017, 50(2):147-153(in Chinese).
[27] 潘泽民. CFRP/Ti复合结构螺旋铣孔自动控制技术研究[D]. 杭州:浙江大学, 2016. PAN Z M. Study on automatic control technology of helical milling on CFRP/Ti composite structures[D]. Hangzhou:Zhejiang University, 2016(in Chinese).
[28] SAADATBAKHSH M H, IMANI H, SADEGHI M H, et al. Experimental study of surface roughness and geometrical and dimensional tolerances in helical milling of AISI 4340 alloy steel[J]. The International Journal of Advanced Manufacturing Technology, 2017, 93:4063-4074.
[29] BRINKSMEIER E, FANGMANN S. Burr and cap formation by orbital drilling of aluminum[J]. Burrs-Analysis, Control and Removal, 2009, 58(2):519-542.
[30] LI S P, QIN X D, JIN Y, et al. A comparative study of hole-making performance by coated and uncoated WC/Co cutters in helical milling of Ti/CFRP stacks[J]. The International Journal of Advanced Manufacturing Technology, 2017, 94:2645-2658.
[31] SADEK A, MESHREKI M, ATTIA M H. Characterization and optimization of orbital drilling of woven carbon fiber reinforced epoxy laminates[J]. CIRP Annals-Manufacturing Technology, 2012,61(1):123-126.
[32] 王奔, 高航, 毕铭智, 等. C/E复合材料螺旋铣削制孔方法抑制缺陷产生的机理[J]. 机械工程学报, 2012, 48(15):173-181. WANG B, GAO H, BI M Z, et al. Mechanism of reduction of damage during orbital drilling of C/E composites[J]. Journal of Mechanical Engineering, 2012,48(15):173-181(in Chinese).
[33] WANG G D, KIRWA M S, LI N. Experimental studies on a two-step technique to reduce delamination damage during milling of large diameter holes in CFRP/Al stack[J]. Composite Structures, 2018, 188:330-339.
[34] WANG G D, MELLY S K, LI N, et al. Research on milling strategies to reduce delamination damage during machining of holes in CFRP/Ti stack[J]. Composite Structures, 2018, 200:679-688.
[35] QIN X D, GUI L J, LI H, et al. Feasibility study on the minimum quantity lubrication in high-speed helical milling of Ti-6Al-4V[J]. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2012, 6(7):1222-1233.
[36] GEIER N, SZALAY T. Optimisation of process parameters for the orbital and conventional drilling of uni-directional carbon fibre-reinforced polymers (UD-CFRP)[J]. Measurement, 2017, 110:319-334.
[37] LI Z, LIU Q. Surface topography and roughness in hole-making by helical milling[J]. The International Journal of Advanced Manufacturing Technology, 2013, 66(9-12):1415-1425.
[38] PAULSEN T, PECAT O, BRINKSMEIER E. Influence of different machining conditions on the subsurface properties of drilled TiAl6V4[J]. Procedia CIRP, 2016, 46:472-475.
[39] 江跃东, 何改云, 秦旭达, 等. TC4钛合金螺旋铣孔工艺孔壁表面完整性研究[J]. 机械科学与技术, 2015, 34(10):1521-1525. JIANG Y D, HE G Y, QIN X D. et al. Study on surface integrity of hole in helical milling process of TC4 titanium alloy[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(10):1521-1525(in Chinese).
[40] RASTI A, SADEGHI M H, FARSHI S S. An investigation into the effect of surface integrity on the fatigue failure of AISI 4340 steel in different drilling strategies[J]. Engineering Failure Analysis, 2019, 95:66-81.
[41] PEREIRA R B D, LEITE R R, ALVIM A C, et al. Multi-objective robust optimization of the sustainable helical milling process of the aluminum alloy Al 7075 using the augmented-enhanced normalized normal constraint method[J]. Journal of Cleaner Production, 2017, 152:474-496.
[42] PEREIRA R B D, LEITE R R, ALVIM A C, et al. Multivariate robust modeling and optimization of cutting forces of the helical milling process of the aluminum alloy Al 7075[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95:2691-2715.
[43] PEREIRA R B D, SILVA L A, LAURO C H, et al. Multi-objective robust design of helical milling hole quality on AISI H13 hardened steel by normalized normal constraint coupled with robust parameter design[J]. Applied Soft Computing Journal, 2019, 75:652-685.
[44] RODRIGUES V F S, FERREIRA J R, PAIVA A P, et al. Robust modeling and optimization of borehole enlarging by helical milling of aluminum alloy Al7075[J]. The International Journal of Advanced Manufacturing Technology, 2019, 100:2583-2599.
[45] 陆翠. CFRP/Ti-6Al-4V叠层结构螺旋铣孔过程工艺优化研究[D]. 天津:天津大学, 2012. LU C. The optimization research on helical milling of CFRP/Ti-6Al-4V stacks[D]. Tianjin:Tianjin University, 2012(in Chinese).
[46] 孙晓太. CFRP/钛合金螺旋铣孔专用刀具优化与试验研究[D]. 天津:天津大学, 2012. SUN X T. Optimization and experimental research of helical milling special tool for CFRP/titanium alloy[D]. Tianjin:Tianjin University, 2012(in Chinese).
[47] LI H, HE G Y, QIN X D, et al. Tool wear and hole quality investigation in dry helical milling of Ti-6Al-4V alloy[J]. The International Journal of Advanced Manufacturing Technology, 2014, 71(5-8):1511-1523.
[48] WANG H Y, QIN X D, LI H, et al. A comparative study on helical milling of CFRP/Ti stacks and its individual layers[J]. The International Journal of Advanced Manufacturing Technology, 2016, 86:1973-1983.
[49] 刘刚, 王亚飞, 张恒, 等. 基于分屑原理的螺旋铣孔专用刀具研究[J]. 机械工程学报, 2014, 50(9):176-184. LIU G, WANG Y F, ZHANG H, et al. Research on helical milling specialized tool based on chip-splitting principle[J]. Journal of Mechanical Engineering, 2014, 50(9):176-184(in Chinese).
[50] ZHOU L, DONG H Y, KE Y L, et al. Analysis of the chip-splitting performance of a dedicated cutting tool in dry orbital drilling process[J]. International Journal of Advanced Manufacturing Technology, 2016, 90(5-8):1809-1823.
[51] TANAKA H, OHTA K, TAKIZAWA R, et al. Experimental study on tilted planetary motion drilling for CFRP[J]. Procedia CIRP, 2012, 1:443-448.
[52] WANG Q, WU Y, BITOU T, et al. Proposal of a tilted helical milling technique for high quality hole drilling of CFRP:Kinetic analysis of hole formation and material removal[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(9-12):4221-4235.
[53] FUKUSHIMA K, TANAKA H. Development of inclined planetary milling machine with automatic tool axis inclination instrument[J]. Procedia CIRP, 2018, 77:50-53.
[54] 董志刚, 康仁科, 朱祥龙, 等. 一种超声螺旋铣孔装置及加工方法:CN201610532267.4[P]. 2016-11-09. DONG Z G, KANG R K, ZHU X L, et al. The invention relates to an ultrasonic helical milling device and a processing method:China. CN201610532267.4[P]. 2016-11-09(in Chinese).
[55] 王佩闯. 超声纵扭复合振动铣孔装置的研究[D]. 哈尔滨:哈尔滨工业大学, 2014. WANG P C. Research on devices in ultrasonic longitudinal-torsional vibration helical milling[D]. Harbin:Harbin Institute of Technology, 2014(in Chinese).
[56] CHEN G, REN C Z, ZOU Y H. et al. Mechanism for material removal in ultrasonic vibration helical milling of Ti-6Al-4V alloy[J]. International Journal of Machine Tools and Manufacture, 2019, 138:1-13.
[57] SULTANA I, SHI Z, ATTIA H, et al. A new hybrid oscillatory orbital process for drilling of composites using superabrasive diamond tools[J]. CIRP Annals-Manufacturing Technology, 2016, 65(1):141-144.
[58] SULTANA I, SHI Z, ATTIA H, et al. Surface integrity of holes machined by orbital drilling of composites with single layer diamond tools[J]. Procedia CIRP, 2016, 45:23-26.
[59] EGUTI C C A, TRABASSO L G. Design of a robotic orbital driller for assembling aircraft structures[J]. Mechatronics, 2014, 24(5):533-545.
[60] 张云志, 刘华东, 邹方, 等. 螺旋轨迹制孔技术在航空制造中的应用[J]. 航空制造技术, 2013, 442(22):34-39. ZHANG Y Z, LIU H D, ZOU F, et al. Application of spiral trajectory drilling technology on aviation manufacturing[J]. Aeronautical Manufacturing Technology, 2013,442(22):34-39(in Chinese).
[61] LIU H, ZHU W D, DONG H Y, et al. A helical milling and oval countersinking end-effector for aircraft assembly[J]. Mechatronics, 2017, 46:101-114.
[62] 王琦. 螺旋铣孔样机设计和试验研究[D]. 天津:天津大学, 2012. WANG Q. Design and experimental research of helical milling prototype[D]. Tianjin:Tianjin University, 2012(in Chinese).
[63] 单以才, 李亮, 何宁, 等. 飞机壁板柔性装配螺旋铣孔单元的研制[J]. 工具技术, 2012, 46(10):129-135. SHAN Y C, LI L, HE N, et al. Development of helical milling unit for airplane panel flexible assembly[J]. Machinery Design & Manufacture, 2012, 46(10):129-135(in Chinese).
[64] 单以才. 航空叠层构件材料螺旋铣孔工艺基础研究[D]. 南京:南京航空航天大学. 2014. SHAN Y C. Fundamental research on the helical milling process of holes for aero laminated structure materials[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2014(in Chinese).
[65] YAGISHITA H, OSAWA J. Hole making machine based on double eccentric mechanism for CFRP/TiAl6V4 stacks[J]. Procedia Manufacturing, 2015, 1:747-755.
[66] YAGISHITA H, OSAWA J. Highly accurate hole making technology of Ti6Al4V by orbital drilling:effect of oil mist[J]. Procedia Manufacturing, 2016, 5:195-204.
[67] 张云志, 刘华东, 刘建东, 等. 便携式螺旋轨迹制孔装置的研制[J]. 航空制造技术, 2018, 61(13):47-53. ZHANG Y Z, LIU H D, LIU J D, et al. Development of portable spiral trajectory drilling device[J]. Aeronautical Manufacturing Technology,2018, 61(13):47-53(in Chinese).