The early research method of rotating disk cavity heat transfer characteristics ignores the influence of compressibility and dissipation. To solve this problem, the governing equation describing the rotating disk cavity system is nondimensionalized under the assumptions of fixed geometry, constant physical property, being compressible, and being dissipative. Analysis yields 7 dimensionless criteria in addition to the dimensionless spatial location. The numerical simulation method is used to investigate the sensitivity of the heat transfer characteristics of the central inlet rotating disk cavity. The results show that in some working conditions, the Eckert criterion reflecting the inlet dissipation effect, the Kibitche criterion reflecting the thermal boundary influence of the disk, and the dimensionless thermal conductivity of the solid have the same magnitude of influence on the Nusselt number as the rotating Reynolds criterion. Based on the analyses this paper offers the precautions and engineering suggestions for the application of early rotating disk cavity heat transfer study results in the design of advanced aero-engine rotating disk cavity.
DING Shuiting
,
DENG Changchun
,
QIU Tian
. Sensibility analysis of heat transfer characteristics to dimensionless criterion in central inlet rotating disk cavity[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019
, 40(12)
: 123017
-123017
.
DOI: 10.7527/S1000-6893.2019.23017
[1] OWEN J M, ROGER R H. Flow and heat transfer in rotating-disc systems, Vol 1:Rotor-stator systems[M]. New York:Research Studies Press, 1989:50-250.
[2] LUO X, WANG L, ZHAO X, et al. Experimental investigation of heat transfer in a rotor-stator cavity with cooling air inlet at low radius[J]. International Journal of Heat and Mass Transfer, 2014, 76:65-80.
[3] WILSON M, PILBROW R, OWEN J M. Flow and heat transfer in a pre-swirl rotor-stator system:95-GT-239[R]. New York:ASME, 1995.
[4] LOCK G D, WILSON M, OWEN J M. Influence of fluid dynamics on heat transfer in a preswirl rotating-disk system[J]. Journal of Engineering for Gas Turbines and Power, 2005, 127(4):791-797.
[5] KAKADE V U, LOCK G D, OWEN J M, et al. Accurate heat transfer measurements using thermochromic liquid crystal. Part 2:Application to a rotating disc[J]. International Journal of Heat and Fluid Flow, 2009, 30(5):950-959.
[6] KAKADE V U, LOCK G D, OWEN J M, et al. Effect of radial location of nozzles on heat transfer in pre-swirl cooling systems:GT2009-59090[R]. New York:ASME, 2009.
[7] DIBELIUS G H, HEINEN M. Heat transfer from a rotating disc:90-GT-219[R]. New York:ASME, 1990.
[8] BUNKER R S, METZGER D E, WITTIG S. Local heat transfer in turbine disk-cavities:Part II-Rotor cooling with radial location injection of coolant:90-GT-026[R]. New York:ASME, 1990.
[9] 徐国强, 丁水汀,邱绪光,等. 具有中心进气外缘加热旋转盘的局部换热特性研究[J]. 航空动力学报, 1995, 10(3):299-309. XU G Q, DING S T, QIU X G, et al. An investigation on local heat transfer performance for rim heated rotating disk with central air inflow[J]. Journal of Aerospace Power, 1995, 10(3):299-309(in Chinese).
[10] 徐国强. 转静系旋转盘腔内冷气的流动与换热特性研究[D]. 北京:北京航空航天大学, 1999:14-23. XU G Q. Flow and heat transfer characteristics of coolant through a shrouded rotating disk system[D]. Beijing:Beihang University, 1999:14-23(in Chinese).
[11] 丁水汀. 高位进气、径向出流的旋转空腔内冷气的流动与换热特性研究[D]. 北京:北京航空航天大学, 1999:17-27. DING S T. Investigation of fluid flow and heat transfer characteristics within a rotating cavity with high positioned axial inlet and radial outlet[D]. Beijing:Beihang University, 1999:17-27(in Chinese).
[12] 罗翔, 徐国强,陶智,等. 30°预旋进气旋转盘流动与换热特性的实验[J]. 北京航空航天大学学报, 2007, 33(3):290-293. LUO X, XU G Q, TAO Z, et al. Flow and heat transfer in rotor stator system with per-swirl angle of 30°[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(3):290-293(in Chinese).
[13] 罗翔, 徐国强,陶智,等. 进气角度对旋转盘冷却效果的影响[J]. 推进技术, 2007, 28(3):240-243. LUO X, XU G Q, TAO Z, et al. Cooling effectiveness in a rotor stator system with different pre-swirl angles[J]. Journal of Propulsion Technology, 2007, 28(3):240-243(in Chinese).
[14] 王锁芳, 朱强华, 栾海峰,等. 高位预旋进气转静盘腔换热实验[J]. 航空动力学报, 2007, 22(8):1216-1221. WANG S F, ZHU Q H, LUAN H F, et al. Experimental study on heat transfer in rotor stator cavity with high positioned pre-swirl inflow[J]. Journal of Aerospace Power, 2007, 22(8):1216-1221(in Chinese).
[15] 赵熙. 复杂涡轮盘腔内流动与换热特性研究[D]. 北京:北京航空航天大学, 2012:6-50. ZHAO X. Study on fluid flow and heat transfer in rotor-stator turbine disc cavities with complex boundary conditions[D]. Beijing:Beihang University, 2012:6-50(in Chinese).
[16] DAILY J W, NECE R E. Chamber dimension effects on induced flow and frictional resistance of enclosed rotating disks[J]. Journal of Basic Engineering, 1960, 82(1):217-232.
[17] DORFMAN L A. Hydrodynamic resistance and the heat loss of rotating solids[M]. Edinburgh:Oliver and Boyd, 1963.
[18] DORFMAN L A. Influence of the radial temperature gradient on the heat transfer from a rotating disk[J]. Izv. Akad. Nauk SSSR. Otd. Tehn. Nauk, 1957(12):64-66(in Russian).
[19] 丁水汀, 张弓,李烨. 旋转盘腔盘缘热流密度的敏感性分析[J]. 推进技术, 2012, 33(2):263-268. DING S T, ZHANG G, LI Y. Sensibility analysis of the heat flux in the rotating cavity[J]. Journal of Propulsion Technology, 2012, 33(2):263-268(in Chinese).
[20] 陶智, 徐国强,丁水汀,等. 航空发动机传热学[M]. 1版. 北京:北京航空航天大学出版社, 2005:256-264. TAO Z, XU G Q, DING S T, et al. Aero-engine heat transfer[M]. 1st ed. Beijing:Beihang University Press, 2005:256-264(in Chinese).
[21] 丁水汀, 付德斌,罗翔,等. 浮升力对双旋转轴间流动换热影响的数值模拟[J]. 推进技术, 2003, 24(6):543-546. DING S T, FU D B, LUO X, et al. Numerical investigation for the influence of buoyancy on heat transfer in an annulus between rotating cylinders with turbulent axial flow[J]. Journal of Propulsion Technology, 2003, 24(6):543-546(in Chinese).
[22] BARDINA J E, HUANG P G, COAKLEY T J. Turbulence modeling validation, testing, and development:NASA-TM-110446[R]. Washington, D.C.:NASA, 1997.
[23] LITTELL H S, EATON J K. Turbulence characteristics of the boundary layer on a rotating disk[J]. Journal of Fluid Mechanics, 1994, 266:175-207.