[1] 曾声奎, PECHT M G, 吴际. 故障预测与健康管理(PHM)技术的现状与发展[J]. 航空学报, 2005, 26(5):626-632. ZENG S K, PECHT M G, WU J. Status and perspectives of prognostics and health management technologies[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(5):626-632(in Chinese).
[2] 彭宇, 刘大同, 彭喜元. 故障预测与健康管理技术综述[J]. 电子测量与仪器学报, 2010, 24(1):1-9. PENG Y, LIU D T, PENG X Y. A review:Prognostics and health management[J]. Journal of Electronic Measurement and Instrument, 2010, 4(1):1-9(in Chinese).
[3] 杨占才, 安茂春, 王红.对发展故障预测和健康管理技术的探讨[J]. 测控技术, 2012,31(1):107-110. YANG Z C, AN M C, WANG H. Exploratory study of developing prognostics and health management technology[J]. Measurement & Control Technology, 2012, 31(1):107-110(in Chinese).
[4] SUN J Z, LI C Y, LIU C, et al. A data-driven health indicator extraction method for aircraft air conditioning system health monitoring[J]. Chinese Journal of Aeronautics, 2019, 32(2):199-206.
[5] HU C H, PEI H, WANG Z Q, et al. A new remaining useful life estimation method for equipment subjected to intervention of imperfect maintenance activities[J]. Chinese Journal of Aeronautics, 2018, 31(3):514-528.
[6] 陈华坤,章卫国, 史静平, 等. 航空电子设备故障预测特征参数提取方法研究[J]. 西北工业大学学报, 2017, 35(3):364-373. CHEN H K, ZHANG W G, SHI J P, et al. Research on fature extraction method for fault prediction of avionics[J]. Journal of Northwestern Polytechnical University, 2017, 35(3):364-373(in Chinese).
[7] 杨军祥, 田泽, 李成文, 等. 新一代航空电子故障预测与健康管理系统综述[J]. 计算机测量与控制, 2014, 22(4):972-978. YANG J X, TIAN Z, LI C W, et al. Summary of new generation avionics prognostics and health management System[J]. Computer Measurement & Control, 2014, 22(4):972-978(in Chinese).
[8] 景博, 黄以峰, 张建业. 航空电子系统故障预测与健康管理技术现状与发展[J]. 空军工程大学学报(自然科学版), 2010, 11(6):1-6. JING B, HUANG Y F, ZHANG J Y. Status and perspectives of prognostics and health management technology of avionics system[J]. Journal of Air Force Engineering University(Natural Science Edition), 2010, 11(6):1-6(in Chinese).
[9] 吕克洪.基于时间应力分析的BIT降虚警与故障预测技术研究[D]. 长沙:国防科学技术大学, 2008. LYU K H. Research on bit false alarm reducing and fault prediction technologies based on time stress analysis[D]. Changsha:National University of Defense Technology, 2008(in Chinese).
[10] LIU D, PANG J, ZHOU J, et al. Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression[J]. Microelectronics Reliability, 2013, 53(6):832-839.
[11] SUSILO D D, WIDODO A, PRAHASTO T, et al. State of health estimation of lithium-ion batteries based on combination of gaussian distribution data and least squares support vector machines regression[C]//Materials Science Forum, 2018, 929:93-102.
[12] JIANG N, CHEN M, XU S, et al. Lifetime evaluation of solder layer in an IGBT module under different temperature levels[C]//2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia). Piscataway, NJ:IEEE Press, 2016:3137-3141.
[13] KWON D, AZARIAN M H, PECHT M. Remaining-life prediction of solder joints using RF impedance analysis and Gaussian process regression[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2015, 5(11):1602-1609.
[14] 徐玉国, 邱静, 刘冠军, 等.基于损伤标尺的电子设备预测维修决策优化[J].航空学报, 2012, 33(11):2093-2105. XU Y G, QIU J, LIU G J, et al. Optimal predictive maintenance decision of electronics based on canaries[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11):2093-2105(in Chinese).
[15] CHAUHAN P, MATHEW S, OSTERMAN M, et al. In situ interconnect failure prediction using canaries[J]. IEEE Transactions on Device and Materials Reliability, 2014, 14(3):826-832.
[16] HIROHATA K, HISAKUNI Y, OMORI T. Prognostic health monitoring method for fatigue failure of solder joints on printed circuit boards based on a canary circuit[J]. Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems, 2018, 1(3):031004.
[17] BATTIPEDE M, DALLA V M D, MAGGIORE P, et al. Model based analysis of precursors of electromechanical servomechanism failures[C]//AIAA Modeling and Simulation Technologies Conference. Reston,VA:AIAA,2015:2035.
[18] KIRKLAND L V, POMBO T, NELSON K, et al. Avionics health management:searching for the prognostics grail[C]//IEEE Proceedings of Aerospace Conference. Piscataway, NJ:IEEE Press, 2004:3448-3454.
[19] 许丽佳.电子系统的故障预测与健康管理技术研究[D]. 成都:电子科技大学, 2009. XU L J. Research on prognostic and health management technology of electronic system[D]. Chengdu:University of Electronic Science and Technology of China, 2009(in Chinese).
[20] YANG F, HABIBULLAH M S, ZHANG T, et al. Health index-based prognostics for remaining useful life predictions in electrical machines[J]. IEEE Transactions on Industrial Electronics, 2016, 63(4):2633-2644.
[21] MOSALLAM A, MEDJAHER K, ZERHOUNI N. Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction[J]. Journal of Intelligent Manufacturing, 2016, 27(5):1037-1048.
[22] POON J, JAIN P, SPANOS C. Fault prognosis for power electronics systems using adaptive parameter identification[J]. IEEE Transactions on Industry Applications, 2017,53(3):2862-2870.
[23] RAMAKRISHNAN A, PECHT M, A life consumption monitoring methodology for electronic systems[J]. IEEE Transactions on Components and Packaging Technologies, 2003, 26(3):625-634.
[24] RENWICK J, KULKARNI C S, CELAYA J R. Analysis of electrolytic capacitor degradation under electrical overstress for prognostic studies[C]//Proceedings of the Annual Conference of the Prognostics and Health Management Society,2015.
[25] RANA Y S, BANERJEE S, SINGH T, et al. Experimental program for physics-of-failure modeling of electrolytic capacitors towards prognostics and health management[J]. Life Cycle Reliability and Safety Engineering, 2017, 6(3):179-185.
[26] LIAO L, KÖTTIG F. A hybrid framework combining data-driven and model-based methods for system remaining useful life prediction[J]. Applied Soft Computing, 2016, 44:191-199.
[27] VASAN A, BING L, PECHT M. Diagnostics and prognostics method for analog electronic circuits[J]. IEEE Transactions on Industrial Electronics, 2013, 60(11):5277-5291.
[28] XU D, SUI S B, ZHANG W, et al. RUL prediction of electronic controller based on multiscale characteristic analysis[J]. Mechanical Systems and Signal Processing, 2018, 113:253-270.
[29] CUI Y, SHI J, WANG Z. Quantum assimilation-based state-of-health assessment and remaining useful life estimation for electronic systems[J]. IEEE Transactions on Industrial Electronics, 2015, 63(4):2379-2390.
[30] HU Y, SHI P, LI H. Health condition assessment of base-Plate solder for multi-Chip IGBT module in wind power converter[J].IEEE Access, 2019(7):72134-72142.
[31] VASAN A, PECHT M G. Electronic circuit health estimation through kernel learning[J]. IEEE Transactions on Industrial Electronics, 2017, 65(2):1585-1594.
[32] 薛东风, 叶继坤. 基于HMM的电子设备健康状态评估方法[J]. 现代防御技术, 2013, 41(2):187-191. XUE D F, YE J K. Electronic equipment health assessment methods based on HMM[J]. Modern Defense Technology, 2013, 41(2):187-191(in Chinese).
[33] ZHAO S, MAKIS V, CHEN S, et al. Health evaluation method for degrading systems subject to dependent competing risks[J]. Journal of Systems Engineering and Electronics, 2018, 29(2):436-444.
[34] 和麟, 雷偲凡, 刘洋. 基于距离度量和健康指数的电子设备健康评估方法[J]. 计算机测量与控制, 2017(10):294-297. HE L, LEI F S, LIU Y, et al. A health evaluation method of electronic equipments based on multi-parameter distance measurement and health index[J]. Computer Measurement & Control, 2017(10):294-297(in Chinese).
[35] MONTANARI G C, HEBNER R, MORSHUIS P. An approach to insulation condition monitoring and life assessment in emerging electrical environments[J]. IEEE Transactions on Power Delivery, 2019, 34(4):1357-1364.
[36] 沈亲沐.振动环境中电连接器间歇故障机理与诊断技术研究[D].长沙:国防科技大学, 2016. SHEN Q M. Research on mechanism and diagnosis of electrical connector intermittent fault under vibration[D]. Changsha:National University of Defense Technology, 2016(in Chinese).
[37] 李乾. 电连接器间歇故障复现与评估关键技术研究[D].长沙:国防科技大学, 2018. LI Q. Research on key technologies of intermittent failures duplication and evaluation for electrical connectors[D]. Changsha:National University of Defense Technology, 2018(in Chinese).
[38] WANG W, PECHT M. Economic analysis of canary-based prognostics and health management[J]. IEEE Transactions on Industrial Electronics. 2011, 58(7):3077-3089.
[39] SCANFF E, FELDMAN K L, GHELAM S, et al. Life cycle cost impact of using prognostic health management (PHM) for helicopter avionics[J]. Microelectronics Reliability. 2007, 47(12):1857-1864.
[40] FELDMAN K, JAZOULI T, SANDBORN P A. A methodology for determining the return on investment associated with prognostics and health management[J]. IEEE Transactions on Reliability, 2009, 58(2):305-316.
[41] VICHARE N M, PECHT M G. Prognostics and health management of electronics[J]. IEEE Transactions on Components and Packaging Technologies, 2006, 29(1):222-229.
[42] 年夫顺. 关于故障预测与健康管理技术的几点认识[J]. 仪器仪表学报, 2018, 39(8):1-14. NIAN F S. Viewpoints about the prognostic and health management[J]. Chinese Journal of Scientific Instrument, 2018, 39(8):1-14(in Chinese).
[43] 韩国泰. 航空电子的故障预测与健康管理技术[J]. 航空电子技术, 2009, 40(1):30-38. HAN G T. Prognostics and health management of avionics[J]. Avionics Technology, 2009, 40(1):30-38(in Chinese).
[44] 宋磊. 军用电子设备预测与健康管理体系结构及关键技术研究[D]. 成都:电子科技大学,2018. SONG L. Research on PHM Architecture and key technology of military electronic equipment[D]. Chengdu:University of Electronic Science and Technology of China, 2018(in Chinese).
[45] ANDERSON K. Focused technology transition:intermittent fault detection & isolation systemTM (IFDISTM)[C]//DoD Maintenance Symposium, 2014.
[46] CORRECHER A, GARCIA E, MORANT F, et al. Intermittent failure dynamics characterization[J]. IEEE Transactions on Reliability, 2012, 61(3):649-658.
[47] ABREU R, ZOETEWEIJ P, GEMUND A J C V. A new bayesian approach to multiple intermittent fault diagnosis[C]//International Jont Conference on Artifical Intelligence, 2009.
[48] 周东华, 史建涛, 何潇. 动态系统间歇故障诊断技术综述[J].自动化学报, 2014, 40(2):161-171. ZHOU D H, SHI J T,HE X. Review of intermittent fault diagnosis techniques for dynamic systems[J]. Acta Automatica Sinica, 2014, 40(2):161-171(in Chinese).
[49] ZHOU D H, ZHAO Y H, WANG Z D. Review on diagnosis techniques for intermittent faults in dynamic systems[J]. IEEE Transactions on Industrial Electronics, 2019(99):1-1.
[50] YAN R, HE X,WANG Z, et al. Detection, isolation and diagnosability of intermittent fault in stochastic systems[J]. International Journal of Control, 2018, 91(2):480-494.
[51] 鄢镕易, 何潇, 周东华. 一类存在参数摄动的线性随机系统的鲁棒间歇故障诊断方法[J].自动化学报, 2016, 42(7):1004-1013. YAN R Y, HE X, ZHOU D H. Robust diagnosis of intermittent faults for linear stochastic systems subject to time-varying perturbations[J]. Acta Automatica Sinica, 2016, 42(7):1004-1013(in Chinese).
[52] LIANG J R, FENG H, DU X. Intermittent fault diagnosability of interconnection networks[J]. Journal of Computer Science &Technology, 2017, 32(6):1279-1287.
[53] 刘艳芳, 吕江花, 马世龙,等. 航电系统并行检测过程与检测设备解耦方法[J]. 航空学报, 2019, 40(8):322818. LIU Y F, LYU J H, MA S L, et al. Decoupling method for test process and test devices in parallel testing of avionics systems[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8):322818(in Chinese).
[54] SIMON D L, GARG S. A systematic approach to sensor selection for aircraft engine health estimation:NASA/TM-215839[R].Washington, D.C.:NASA, 2009.
[55] 王宝龙, 黄考利. 面向生命周期的复杂电子装备测试性建模[J]. 仪器仪表学报, 2006, 27(6):1230-1232. WANG B L, HUANG K L. Testability modeling of complicated electronic equipments facing to life cycle[J]. Chinese Journal of Scientific Instrument, 2006, 27(6):1230-1232(in Chinese).
[56] 张亮, 张凤鸣. 装备健康管理中的传感器优化配置问题研究[J].传感器与微系统, 2008, 27(7):18-20. ZHANG L, ZHANG F M. Research on optimal sensor placement in equipment health management[J]. Transducer and Microsystem Technologies, 2008, 27(7):18-20(in Chinese).
[57] 杨述明. 面向装备健康管理的可测性技术研究[D].长沙:国防科技大学, 2012. YANG S M. Research on testability technology for equipment health management[D]. Changsha:National University of Defense Technology, 2012(in Chinese).
[58] 谭晓栋. 面向装备健康状态评估的可测性设计关键技术研究[D].长沙:国防科技大学, 2013. TAN X D. Research on key technologies of design for testability for health state evaluation[D]. Changsha:National University of Defense Technology, 2013(in Chinese).