Electronics and Electrical Engineering and Control

Characteristic model-based station-keeping control for Halo orbit

  • ZHANG Bin ,
  • ZHOU Jing
Expand
  • Beijing Institute of Control Engineering, Beijing 100190, China

Received date: 2019-06-10

  Revised date: 2019-07-15

  Online published: 2019-09-02

Abstract

Orbits around libration points have a key value in future deep space explorations. However, due to the instability of libration points, explorers that are running on the orbits around them will, if without control, deviate at a high speed. As a result, station-keeping is essential in practical missions. To solve the station-keeping problem of the periodical Halo orbits around Earth-Moon L2 point, a baseline orbit was obtained through Richardson three-order analytical solution, differential correction, and target shooting strategy. Then, a characteristic model-based golden-section controller was designed for velocity tracking and a PD controller was designed for position tracking. Finally, simulations were conducted under restricted three-body model and bicircular restricted four-body model. Results show that, under both circumstances, the tracking accuracy was better than 100 m in position and 0.003 m/s in velocity, while the controller consumption of bicircular restricted four-body model was an order of magnitude higher than that of the restricted three-body model.

Cite this article

ZHANG Bin , ZHOU Jing . Characteristic model-based station-keeping control for Halo orbit[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(11) : 323206 -323206 . DOI: 10.7527/S1000-6893.2019.23206

References

[1] 徐明. 平动点轨道的动力学与控制研究综述[J]. 宇航学报, 2009, 30(4):1299-1313. XU M. Overview of orbital dynamics and control for libration point orbits[J]. Journal of Astronautics, 2009, 30(4):1299-1313(in Chinese).
[2] 孟云鹤, 张跃东, 陈琪锋. 平动点航天器动力学与控制[M]. 北京:科学出版社, 2016:1-2. MENG Y H, ZHANG Y D, CHEN Q F. Dynamics and control of spacecraft near libration points[M]. Beijing:Science Press, 2016:1-2(in Chinese).
[3] 雷汉伦. 平动点,不变流形及低能轨道[D]. 南京:南京大学, 2015:1-2. LEI H L. Equilibrium point, invariant manifold and low-energy trajectory[D]. Nanjing:Nanjing University, 2015:1-2(in Chinese).
[4] 钱霙婧. 地月空间拟周期轨道上航天器自主导航与轨道保持研究[D]. 哈尔滨:哈尔滨工业大学, 2013:1-14. QIAN Y J. Research on autonomous navigation and station-keeping for quasi-periodic orbit in the Earth-Moon system[D]. Harbin:Harbin Institute of Technology, 2013:1-14(in Chinese).
[5] 侯锡云, 刘林. 共线平动点的动力学特征及在深空探测中的应用[J]. 宇航学报, 2008, 29(3):736-747. HOU X Y, LIU L. The dynamics and applications of the collinear libration points in deep space exploration[J]. Journal of Astronautics, 2008, 29(3):736-747(in Chinese).
[6] XU M, LIANG Y, REN K. Survey on advances in orbital dynamics and control for libration point orbits[J]. Progress in Aerospace Sciences, 2016, 82:24-35.
[7] 周天帅, 李东, 陈新民, 等. 国外日-地动平衡点卫星应用及转移轨道实现方式[J]. 导弹与航天运载技术, 2005, 5:30-34. ZHOU T S, LI D, CHEN X M, et al. Application of foreign spacecrafts of Sun-Earth libration points and manners of transfer trajectory[J]. Missiles and Space Vehicles, 2004, 5:30-34(in Chinese).
[8] FARQUHAR R W. The control and use of libration-point satellites[R].Washington D.C.:NASA, 1970.
[9] LO M W. The interplanetary superhighway and the orgins program[C]//Proceedings of IEEE Aerospace Conference. Piscataway, NJ:IEEE Press, 2002.
[10] 李明涛. 共线平动点任务节能轨道设计与优化[D]. 北京:中国科学院, 2010:2-3. LI M T. Low energy trajectory design and optimization for collinear libration points missions[D]. Beijing:Chinese Academy of Sciences, 2010:2-3(in Chinese).
[11] SHIROBOKOV M, TROFIMOV S, OVCHINNIKOV M. Survey of station-keeping techniques for libration point orbtis[J]. Journal of Guidance, Control and Dynamics, 2017, 40(5):1085-1105.
[12] SIMO C, GÓMEZ G, LLIBRE J, et al. Station keeping of a quasiperiodic halo orbit using invariant manifolds[C]//Proceedings of the Second International Symposium on Spacecraft Flight Dynamics. Darmstadt:ESA, 1986.
[13] BREAKWELL J V, KAMEL A A, RATNER M J. Station-keeping for a translunar communication station[J]. Celestial Mechanics, 1974, 10:357-373.
[14] HOWELL K C, PERNICKA H J. Station-keeping method for libration point trajectories[J]. Journal of Guidance, Control and Dynamics, 1993, 16(1):151-159.
[15] LIAN Y, GOMEZ G, MASDEMONT J J, et al. Station-keeping of real Earth-Moon libration point orbits using discrete-time sliding mode control[J]. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(10):3792-3807.
[16] NAZARI M, ANTHONY W, BUTCHER E A. Continuous thrust stationkeeping in Earth-Moon L1 halo orbits based on LQR control and Floquet theory[C]//AIAA/AAS Astrodynamics Specialist Conference. Reston, VA:AIAA, 2014.
[17] 徐明, 徐世杰. Halo轨道维持的线性周期控制策略[J]. 航天控制, 2008, 26(3):13-18. XU M, XU S J. Station-keeping strategy of halo orbit in linear periodic control[J]. Aerospace Control, 2008, 26(3):13-18(in Chinese).
[18] 孟斌. 基于特征模型的高超声速飞行器自适应控制研究进展[J]. 控制理论与应用, 2014, 31(12):1640-1649. MENG B. Review of the characteristic model-based hypersonic flight vehicles adaptive control[J]. Control Theory & Applications, 2014, 31(12):1640-1649(in Chinese).
[19] 吴宏鑫, 胡军, 解永春. 基于特征模型的智能自适应控制[M]. 北京:中国科学技术出版社, 2009:1-2. WU H X, HU J, XIE Y C. Characteristic model-based intelligent adaptive control[M]. Beijing:China Science and Technology Press, 2009:1-2(in Chinese).
[20] RICHARDSON D L. Analytic construction of periodic orbits about the collinear points[J]. Celestial Mechanics, 1980, 22:241-253.
[21] POPESCU M, CARDOS V. The domain of initial conditions for the class of three-dimensional halo periodic orbits[J]. Acta Astronautica, 1995, 36(4):193-196.
[22] 齐春子, 吴宏鑫, 吕振铎. 多变量全系数自适应控制系统稳定性的研究[J]. 控制理论与应用, 2000, 17(4):489-494. QI C Z, WU H X, LV Z D. Study on the stability of multivariable all-coefficient adaptive control system[J]. Control Theory & Applications, 2000, 17(4):489-494(in Chinese).
[23] SUN D. Stability analysis of golden-section adaptive control systems based on the characteristic model[J]. Science China:Information Sciences, 2017, 60(9):092205.
[24] LI C, LIU G, HUANG J, et al. Station-keeping control for collinear libration point orbits using NMPC[C]//AAS/AIAA Astrodynamics Specialist Conference. Reston, VA:AIAA, 2015.
Outlines

/