[1] 张云鹏, 孙广标, 张安洲. 超声磨料对TC4钛合金电火花加工表面质量的影响[J]. 航空学报, 2010, 31(1):204-209. ZHANG Y P, SUN G B, ZHANG A Z. Effect of abrasive particle ultrasonic vibration on surface quality of titanium alloy TC4 in EDM[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1):204-209(in Chinese).
[2] 丁文锋, 奚欣欣, 占京华, 等. 航空发动机钛材料磨削技术研究现状及展望[J]. 航空学报, 2019, 40(6):022763. DING W F, XI X X, ZHAN J H, et al. Research status and future development of grinding technology of titanium materials for aero-engines[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6):022763(in Chinese).
[3] ARRAZOLA P J, OZEL T, UMBRELLO D, et al. Recent advances in modelling of metal machining processes[J]. CIRP Annals-Manufacturing Technology, 2013, 62(2):695-718.
[4] 官良鹏, 王卫泽. 超声深滚作用力对Ti-6Al-4V合金微观组织及表面性能的影响[J]. 表面技术, 2018, 47(7):172-178. GUAN L P, WANG W Z. Effects of ultrasonic deep rolling force on microstructure and surface properties of Ti-6Al-4V[J]. Surface Technology, 2018, 47(7):172-178(in Chinese).
[5] 隈部淳一郎. 精密加工一振动切削基础和应用(中译本)[M]. 北京:机械工业出版社, 1985:20-25. KUMABE J. Fundamentals and applications of precision machining vibration cutting (Chinese version)[M]. Beijing:China Machine Press, 1985:20-25(in Chinese).
[6] ABDULLAH A, FARHADI A, PAK A. Ultrasonic-assisted dry creep-feed up-grinding of super alloy inconel 738LC[J]. Experimental Mechanics, 2012, 52(7):843-853.
[7] CHEN H, ZHOU W, TANG J. An experimental study of the effects of ultrasonic vibration on grinding surface roughness of C45 carbon steel[J]. International Journal of Advanced Manufacturing Technology, 2013, 68(9-12):2095-2098.
[8] NIU Y, JIAO F, ZHAO B, et al. Multi-objective optimization of processing parameters in longitudinal-torsion ultrasonic assisted milling of Ti-6Al-4V[J]. International Journal of Advanced Manufacturing Technology, 2017, 93(9-12):1-12.
[9] XIANG D H, WU B F, YAO Y L, et al. Ultrasonic longitudinal-torsional vibration-assisted cutting of Nomex honeycomb-core composites[J]. The International Journal of Advanced Manufacturing Technology, 2019, 100(5-8):1521-1530.
[10] LIN S. Study on the Langevin piezoelectric ceramic ultrasonic transducer of longitudinal-flexural composite vibrational mode[J]. Ultrasonics, 2006, 44(1):109-114.
[11] ZHOU G, ZHANG Y, ZHANG B. The complex-mode vibration of ultrasonic vibration systems[J]. Ultrasonics, 2002, 40(1):907-911.
[12] QIAN X H, SHEN M H. A new standing-wave linear moving ultrasonic motor based on two bending modes[J]. Applied Mechanics and Materials, 2011, 101-102:140-143.
[13] WANG J, GUO J. Development of a radial-torsional vibration hybrid type ultrasonic motor with a hollow and short cylindrical structure[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 2009, 56(5):54-58.
[14] MA C X, SHAMOTO E, MORIWAKI T, et al. Study of machining accuracy in ultrasonic elliptical vibration cutting[J]. International Journal of Machine Tools and Manufacture, 2004, 44(12-13):1305-1310.
[15] PAKTINAT H, AMINI S. Numerical and experimental studies of longitudinal and longitudinal-torsional vibrations in drilling of AISI 1045[J]. International Journal of Advanced Manufacturing Technology, 2018, 94:2577-2592.
[16] ASAMI T, MIURA H. Study of ultrasonic machining by longitudinal-torsional vibration for processing brittle materials-observation of machining marks[J]. Physics Procedia, 2015, 70:118-121.
[17] WANG J, ZHANG J, FENG P, et al. Damage formation and suppression in rotary ultrasonic machining of hard and brittle materials:A critical review[J]. Ceramics International, 2018, 44(2):1227-1239.
[18] 冯平法, 王健健, 张建富, 等. 硬脆材料旋转超声加工技术的研究现状及展望[J]. 机械工程学报, 2017, 53(19):3-21. FENG P F, WANG J J, ZHANG J F, et al. Research status and future prospects of rotary ultrasonic machining of hard and brittle materials[J]. Journal of Mechanical Engineering, 2017, 53(19):3-21(in Chinese).
[19] 牛赢, 焦锋, 赵波, 等. 纵扭超声铣削残余应力三维有限元仿真与试验[J]. 机械工程学报, 2019, 55(13):224-232. NIU Y, JIAO F, ZHAO B, et al. 3D finite element simulation and experimentation of residual stress in longitudinal torsional ultrasonic assisted milling[J]. Journal of Mechanical Engineering, 2019, 55(13):224-232(in Chinese).
[20] 唐军. 碳/碳化硅材料纵扭复合超声铣削系统及加工稳定性的研究[D]. 焦作:河南理工大学, 2015:106-109. TANG J. Study on the longitudinal-torsional composite ultrasonic milling system of carbon/silicon carbide and machining stability[D]. Jiaozuo:Henan Polytechnic University, 2015:106-109(in Chinese).
[21] ZHAO C Y, WANG X B, ZHAO B, et al. Microstructure of high-performance aluminum alloy surface processed by the single-excitation same-frequency longitudinal-torsional coupled ultrasonic vibration milling[J]. Materials, 2018, 11(10):1975.
[22] GENG D X, ZHANG D Y, XU Y G, et al. Comparison of drill wear mechanism between rotary ultrasonic elliptical machining and conventional drilling of CFRP[J]. Journal of Reinforced Plastics and Composites, 2014, 33(9):797-809.
[23] DING K, FU Y, SU H, et al. Wear of diamond grinding wheel in ultrasonic vibration-assisted grinding of silicon carbide[J]. The International Journal of Advanced Manufacturing Technology, 2014, 71(9-12):1929-1938.
[24] 杨淋, 赵淳生. 大力矩应力型纵扭复合超声电机[J].振动.测试与诊断, 2012(S1):126-131. YANG L, ZHAO C S. Stress-type hybrid ultrasonic motors using longitudinal and torsional vibration modes with large torque[J]. Journal of Vibration Measurement & Diagnosis, 2012(S1):126-131(in Chinese).
[25] 唐军, 赵波. 单激励纵扭复合超声铣削系统研究[J]. 振动与冲击, 2015, 34(6):57-61. TANG J, ZHAO B. A new longitudinal-torsional composite ultrasonic milling system with a single excitation[J]. Journal of Vibration and Shock, 2015, 34(6):57-61(in Chinese).
[26] ASAMI T, TAMADA Y, HIGUCHI Y, et al. Ultrasonic metal welding with a vibration source using longitudinal and torsional vibration transducers[J]. Japanese Journal of Applied Physics, 2017, 56(7S1):07JE02.
[27] KARAFI M R, HOJJAT Y, SASSANI F. A new hybrid longitudinal-torsional magnetostrictive ultrasonic transducer[J]. Smart Materials & Structures, 2013, 22(6):065013.
[28] 赵波, 殷森, 王晓博, 等. 超声纵-扭复合空心变幅杆的振动特性分析[J]. 机械工程学报, 2019, 55(5):121-129. ZHAO B, YIN S, WANG X B, et al. Vibration analysis of ultrasonic longitudinal-torsional composite hollow horn[J]. Journal of Mechanical Engineering, 2019, 55(5):121-129(in Chinese).
[29] 皮钧. 圆环斜槽传振杆的纵扭振动转换[J]. 机械工程学报, 2008, 44(5):242-248. PI J. Longitudinal-torsional vibration converter of cylinder with multiple diagonal slits[J]. Journal of Mechanical Engineering, 2008, 44(5):242-248(in Chinese).
[30] AL-BUDAIRI H, LUCAS M, HARKNESS P. A design approach for longitudinal-torsional ultrasonic transducers[J]. Sensors and Actuators A:Physical, 2013, 198:99-106.
[31] AMINI S, SOLEIMANI M, PAKTINAT H, et al. Effect of longitudinal-torsional vibration in ultrasonic-assisted drilling[J]. Advanced Manufacturing Processes, 2017, 32(6):616-622.
[32] WANG J, ZHANG J, FENG P, et al. Feasibility study of longitudinal-torsional coupled rotary ultrasonic machining of brittle material[J]. Journal of Manufacturing Science and Engineering, 2018, 140(5):051008.
[33] 刘喜武. 弹性波场论基础[M]. 青岛:中国海洋大学出版社, 2008:69-72. LIU X W. Fundamentals of elastic wave field-theory[M]. Qingdao:China Ocean University Press, 2008:69-72(in Chinese).
[34] 林仲茂. 超声变幅杆的原理和设计[M]. 北京:科学出版社, 1987:54-60. LIN Z M. Principle and design of ultrasonic horn[M]. Beijing:Science Press, 1987:54-60(in Chinese).
[35] 曹凤国. 超声加工[M]. 北京:化学工业出版社, 2014:87-88. CAO F G. Ultrasonic machining[M]. Beijing:Chemical Industry Press, 2014:87-88(in Chinese).
[36] 袁松梅, 刘明. 纵-扭复合超声振动加工系统设计及频率简并研究[J]. 振动与冲击, 2016, 35(5):8-13. YUAN S M, LIU M. Design of a longitudinal-torsional composite ultrasonic vibration machining system and its natural frequencies merging[J]. Journal of Vibration and Shock, 2016, 35(5):8-13(in Chinese).
[37] CARDONI A, HARKNESS P, LUCAS M. Ultrasonic rock sampling using longitudinal-torsional vibrations[J]. Ultrasonics, 2010, 50(4-5):447-452.
[38] 殷森. 纵-扭复合超声铣削系统的设计及试验研究[D]. 焦作:河南理工大学, 2018:58-60. YIN S. Design and experimental research on the composite longitudinal-torsional ultrasonic milling system[D]. Jiaozuo:Henan Polytechnic University, 2018:58-60(in Chinese).
[39] 王明海, 姜庆杰, 王奔. C/SiC复合材料超声扭转振动铣削抑制损伤产生的机理[J]. 现代制造工程, 2016(3):103-109. WANG M H, JIANG Q J, WANG B. Mechanism of reduction of damage during ultrasonic torsional vibration milling of C/SiC composites[J]. Modern Manufacturing Engineering, 2016(3):103-109(in Chinese).
[40] GU L Z, LONG Z M, WANG D, et al. The stress wave propagation and crack formation in vibratory metal cutting process[J]. Key Engineering Materials, 2004, 259-260:456-461.