Fluid Mechanics and Flight Mechanics

Effect of bionic sinusoidal leading-edge on dynamic stall of airfoil

  • HOU Yufei ,
  • LI Zhiping
Expand
  • 1. School of Energy and Power Engineering, Beihang University, Beijing 100083, China;
    2. National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, Beihang University, Beijing 100083, China;
    3. Beihang(Sichuan) West International Innovation Port Technology Co., Ltd., Chengdu 610200, China

Received date: 2019-07-10

  Revised date: 2019-07-17

  Online published: 2019-08-12

Abstract

Dynamic stall causes dramatic changes in aerodynamic loads of blades, leading to a sharp increase in vibration loads and a significant decrease in blade life. To solve the dynamic stall problem of airfoil, this paper obtains inspiration from the good flow characteristics of humpback whale's pectoral fins under dynamic tilt, and models the bionic sinusoidal leading-edge airfoil (including three peaks and two wavelengths) to suppress dynamic stall. With the help of three-dimensional unsteady numerical simulation method, the control mechanism of bionic leading-edge on dynamic stall and the effects of motion parameters and inflow velocity on SC1095 rotor airfoil are studied by using the moving grid technology. The results show that the peak values of pitch moment coefficient and drag coefficient are reduced greatly by sinusoidal leading-edge. The bigger the wave peak and the smaller the wavelength of the leading-edge, the more obvious the suppression effect of the peak values of drag coefficient and pitch moment coefficient are. Although the peak value of lift coefficient decreases, the reduction is much smaller than that of the former two. For example, for one of the bionic wings, the peak pitch moment coefficient decreases by 47.7%, the peak drag coefficient decreases by 36.4%, whereas the peak lift coefficient decreases by 14.1%. At approximately the maximum angle of attack, the sinusoidal leading-edge can mitigate stall characteristics and make the load change more gently. At higher average angle of attack, low pitch frequency and low Mach number, the dynamic stall control effect of bionic wing is stronger. Comparatively speaking, amplitude of angle of attack matters less.

Cite this article

HOU Yufei , LI Zhiping . Effect of bionic sinusoidal leading-edge on dynamic stall of airfoil[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(1) : 123276 -123276 . DOI: 10.7527/S1000-6893.2019.23276

References

[1] BENSON R G, DADONE L U, GORMONT R E, et al. Influence of airfoils on stall flutter boundaries of articulated helicopter rotors[J]. Journal of the American Helicopter Society, 1973, 18(1):36-46.
[2] 许和勇,邢世龙,叶正寅,等. 基于充气前缘技术的旋翼翼型动态失速抑制[J]. 航空学报,2017,38(6):120799. XU H Y, XING S L, YE Z Y, et al. Dynamic stall suppression for rotor airfoil based on inflatable leading edge technology[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6):120799(in Chinese).
[3] CARR L, MCALISTER K. The effect of a leading-edge slat on the dynamic stall of an oscillating airfoil:AIAA-1983-2533[R]. Reston, VA:AIAA, 1983.
[4] CARR L, WILDER M C, NOONAN K W, et al. Effect of compressibility on suppression of dynamic stall using a slotted airfoil[J]. Journal of Aircraft, 2001, 38(2):296-309.
[5] SINGH C, PEAKE D, KHADOGOLIAN V, et al. Parametric study of an air-jet vortex generator configuration to control rotorcraft retreating blade stall:AIAA-2005-1366[R]. Reston, VA:AIAA, 2005.
[6] 马奕扬,招启军,赵国庆. 基于后缘小翼的旋翼翼型动态失速控制分析[J]. 航空学报,2017,38(3):120312. MA Y Y, ZHAO Q J, ZHAO G Q. Dynamic stall control of rotor airfoil via trailing-edge flap[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3):120312(in Chinese).
[7] MAI H, DIETZ G, GEISSLER W, et al. Dynamic stall control by leading edge vortex generators[J]. Journal of the American Helicopter Society, 2008, 53(1):26-36.
[8] FISH F E, BATTLE J M. Hydrodynamic design of the humpback whale flipper[J]. Journal of Morphology, 1995, 225(1):51-60.
[9] WATTS P, FISH F. The influence of passive, leading edge tubercles on wing performance[C]//Proceedings of the 12th International Symposium on Unmanned Untethered Submersible Technology, 2001.
[10] MIKLOSOVIC D, MURRAY M, HOWLE L, et al. Leading-edge tubercles delay stall on humpback whale flippers[J]. Physics of Fluids, 2004, 16(5):L39-L42.
[11] HANSEN K L, KELSO R M, DALLY P B. Performance variations of leading-edge tubercles for distinct airfoil profiles[J]. AIAA Journal, 2011, 49(1):185-194.
[12] PEDRO H T, KOBAYASHI M H. Numerical study of stall delay on humpback whale flippers:AIAA-2008-0584[R]. Reston, VA:AIAA, 2008.
[13] ZHANG M M, WANG G F, XU J Z, Aerodynamic control of low-Reynolds-number airfoil with leading-edge protuberances[J]. AIAA Journal, 2013, 51(8):1960-1971.
[14] STANWAY M J. Hydrodynamic effects of leading-edge tubercles on control surfaces and in flapping foil propulsion[D]. Cambridge, MA:Massachusetts Institute of Technology, 2008:26-31.
[15] HANSEN K L, KELSO R M, DALLY B B. Evolution of the streamwise vortices generated between leading edge tubercles[J]. Journal of Fluid Mechanics, 2016, 788:730-766.
[16] WEBER P W, HOWLE L E, MURRAY M M, et al. Computational evaluation of the performance of lifting surfaces with leading-edge protuberances[J]. Journal of Aircraft, 2011, 48(2):591-600.
[17] BORG J. The effect of leading edge serrations on dynamic stall[D]. Southampton:University of Southampton, 2012:39-48.
[18] 张仕栋, 胡文荣. 仿生波状前缘机翼动态失速控制的数值研究[J]. 水动力学研究与进展, 2015, 30(1):24-32. ZHANG S D, HU W R. The numerical study of bionic wavy leading-edge wing in dynamic stall control[J]. Chinese Journal of Hydrodynamics, 2015, 30(1):24-32(in Chinese).
[19] JOHARI H, HENOCH C, CUSTODIO D, et al. Effects of leading-edge protuberances on airfoil performance[J]. AIAA Journal, 2007, 45(11):2634-2642.
[20] GHARALI K, DAVID A J. Dynamic stall simulation of a pitching airfoil under unsteady freestream velocity[J]. Journal of Fluids and Structures, 2013, 42:228-244.
[21] MCALISTER K W, PUCCI S L, MCCROSKERY W J, et al. An experimental study of dynamic stall on advanced airfoil section:NASA-TM-84245-VOL-2[R]. Washington, D.C.:NASA, 1982.
[22] BALDUZZI F, BIANCHINI A, MALECI R, et al. Critical issues in the CFD simulation of Darrieus wind turbines[J]. Renewable Energy, 2016, 85:419-435.
[23] FESZTY D, GILLIES E A, VEZZA M. Alleviation of airfoil dynamic stall moments via trailing-edge-flap flow control[J]. AIAA Journal, 2004, 42(1):17-25.
[24] CARR L W, MCALISTER K W, MCCROSKEY W J. Analysis of the development of dynamic stall based on oscillating airfoils experiments:NASA-TN-D-8382, A-6674[R]. Washington, D.C.:NASA, 1977.
[25] LORBER P F, CARTA F O. Airfoil dynamic stall at constant pitch rate and high Reynolds number:AIAA-1987-1329[R]. Reston, VA:AIAA, 1987.
Outlines

/