Electronics and Electrical Engineering and Control

Explicit guidance law with varying gain and circular prediction for mid-course interception

  • ZHOU Cong ,
  • YAN Xiaodong ,
  • TANG Shuo
Expand
  • 1. School of Astronautics, Northwestern Polytechnical University, Xi'an 710068, China;
    2. Shaanxi Aerospace Flight Vehicle Design Key Laboratory, Xi'an 710068, China

Received date: 2019-04-30

  Revised date: 2019-05-27

  Online published: 2019-07-02

Abstract

In order to improve the estimation accuracy of target's state and to satisfy multi-constraints of intercepting process in the near space, an explicit mid-course guidance law with varying gain against high maneuverable target is designed. Firstly, the dynamic characteristics of the target in the near space was analyzed. Based on it, a geometric prediction method of the target's trajectory is proposed, which approximates the target trajectory to circular arc. Subsequently, the state of target and the interception time-to-go can be more accurately predicted along the arc. Secondly, the explicit guidance law with three-dimensional angular constraints are derived. In order to restrict commanded acceleration within feasible boundaries, a weight function is constructed with respect to dynamic pressure, and is enforced to the performance index function to modulate the guidance gain. Accordingly, the acceleration command can be adjusted to avoid over demanded by the adaptive update of guidance gain as flight altitude increasing. Finally, by combining circle prediction and the explicit guidance law with varying gain, high terminal interception accuracy against high speed maneuverable target is achieved. The simulation results show the proposed method can significantly improve the accuracy of target prediction as well as satisfy the constraints of the terminal impact angle and the available accelerations.

Cite this article

ZHOU Cong , YAN Xiaodong , TANG Shuo . Explicit guidance law with varying gain and circular prediction for mid-course interception[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(10) : 323122 -323122 . DOI: 10.7527/S1000-6893.2019.23122

References

[1] 张灿, 林旭斌, 胡冬冬, 等. 2018年国外高超声速飞行器技术发展综述[J]. 飞航导弹, 2019, 10(2):1-5. ZHANG C, LIN X B, HU D D, et al. Review of hypersonic technologies progress abroad in 2018[J]. Aerodynamic Missile Journal, 2019,10(2):1-5(in Chinese).
[2] ZARCHAN P. Tactical and strategic missile guidance[M]. Reston, VA:AIAA, 2012:165-166.
[3] 余名哲, 张友安, 钱进. 基于遭遇点预测的比例导引与多平台接力制导交接律设计[J]. 海军航空工程学院学报, 2010, 25(3):255-258. YU M Z, ZHANG Y A, QIAN J. Design of the proportional navigation based on hit point prediction and multi-platform relay-guidance transfer law[J]. Journal of Naval Aeronautical and Astronautical University, 2010, 25(3):255-258(in Chinese).
[4] 张友安, 马国欣, 万宇. 一种弹目遭遇点预测方法[J]. 海军航空工程学院学报, 2011, 26(5):513-516. ZHANG Y A, MA G X, WAN Y. A method to predict impact point of missile and target[J]. Journal of Naval Aeronautical and Astronautical University, 2011, 26(5):513-516(in Chinese).
[5] 秦雷. 临近空间领域面临的重大控制科学问题研究[J]. 战术导弹技术, 2017, 1(1):85-92. QING L. Research on important control scientific problems of near space hypersonic vehicles[J]. Tactical Missile Technology, 2017,1(1):85-92(in Chinese).
[6] 葛致磊, 孙琦. 交会角对制导性能的影响[J]. 宇航学报, 2008, 29(5):1492-1495. GE Z L,SUN Q. Effects of interception angle on the performance of guidance[J]. Journal of Astronautics, 2008, 29(5):1492-1495(in Chinese).
[7] 韦刚, 刘昌云, 姚小强, 等. 临近空间高超声速飞行器拦截关键问题研究[J]. 飞航导弹, 2016, 1(8):12-16. WE G, LIU C Y, YAO X Q, et al. Research on key problems for interception of near-space hypersonic vehicle[J]. Winged Missiles Journal, 2016, 1(8):12-16(in Chinese).
[8] DWIVEDI P N, BHATTACHARYA A, PADHI R. Suboptimal midcourse guidance of interceptors for high-speed targets with alignment angle constraint[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(3):860-877.
[9] KIM B S, LEE J G, HAN H S. Biased PNG law for impact with angular constraint[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(1):277-288.
[10] KIM T H, PARK B G, TAHK M J. Bias-shaping method for biased proportional navigation with terminal-angle constraint[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(6):1810-1816.
[11] KUMAR S R, RAO S, GHOSE D. Nonsingular terminal sliding mode guidance with impact angle constraints[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(4):1114-1130.
[12] KUMAR S R, RAO S, GHOSE D. Sliding-mode guidance and control for all-aspect interceptors with terminal angle constraints[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(4):1230-1246.
[13] SHAFERMAN V, SHIMA T. Linear quadratic guidance laws for imposing a terminal intercept angle[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(5):1400-1412.
[14] RYOO C K, CHO H, TAHK M J. Optimal guidance laws with terminal impact angle constraint[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(4):724-732.
[15] RYOO C K, CHO H, TAHK M J. Time-to-go weighted optimal guidance with impact angle constraints[J]. IEEE Transactions on Control Systems Technology, 2006, 14(3):483-492.
[16] TAUB I, SHIMA T. Intercept angle missile guidance under time varying acceleration bounds[J]. Journal of Guidance, Control, and Dynamics, 2005, 36(3):686-699.
[17] CHO H, RYOO C K. Implementation of optimal guidance laws using predicted missile velocity profiles[J]. Journal of Guidance, Control, and Dynamics, 1999, 22(4):579-588.
[18] LEE Y I, RYOO C K, KIM E. Optimal guidance with constraints on impact angle and terminal acceleration:AIAA-2003-5795[R]. Reston, VA:AIAA, 2003.
[19] MONDAL S, PADHI R. State and input constrained missile guidance using spectral model predictive static programming:AIAA-2018-1584[R]. Reston, VA:AIAA, 2018.
[20] CHERRY G. A general, explicit, optimizing guidance law for rocket-propelled spaceflight:AIAA-1964-0638[R]. Reston, VA:AIAA, 1964.
[21] D'SOUZA C N. An optimal guidance law for planetary landing:AIAA-1997-3709[R]. Reston, VA:AIAA, 1997.
[22] OHLMYER E, PHILLIPS C A. Generalized vector explicit guidance[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(2):261-268.
[23] ZHOU J, LEI H M, ZHANG D. Online optimal midcourse trajectory modification algorithm for hypersonic vehicle interceptions[J]. Aerospace Science and Technology, 2017, 63(4):266-277.
[24] 周觐, 雷虎民, 邵雷, 等. 拦截弹中制导最优弹道簇生成[J]. 国防科技大学学报, 2017, 39(5):171-177. ZHOU J, LEI H M, SHAO L, et al. Midcourse neighboring optimal trajectory cluster generation for interceptors[J]. Journal of National University of Defence Technology, 2017, 39(5):171-177(in Chinese).
[25] 张洪波, 黄景帅, 李广华, 等. 典型控制规律滑翔飞行器的轨迹预测方法[J]. 现代防御技术, 2017, 45(4):112-118. ZHANG H B, HUANG J S, LI G H, et al. Trajectory prediction of glide vehicle based on typical control law[J]. Modern Defence Technology, 2017, 45(4):112-118(in Chinese).
[26] 张凯, 熊家军, 李凡, 等. 基于意图推断的高超声速滑翔目标贝叶斯轨迹预测[J]. 宇航学报, 2018,39(11):1258-1265. ZHANG K, XIONG J J, LI F, et al. Bayesian trajectory prediction for a hypersonic gliding reentry vehicle based on intent inference[J]. Journal of Astronautics, 2018, 39(11):1258-1265(in Chinese).
[27] 翟岱亮, 雷虎民, 李炯, 等. 基于自适应IMM的高超声速飞行器轨迹预测[J]. 航空学报, 2016, 37(11):3466-3475. ZHAI D L, LEI H M, LI J, et al. Trajectory prediction of hypersonic vehicle based on adaptive IMM[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3466-3475(in Chinese).
[28] 李凡, 熊家军. 临近空间高超声速跳跃滑翔式目标自适应跟踪模型[J]. 航空学报, 2018, 39(12):322355. LI F, XIONG J J. Adaptive tracking model for near space hypersonic jumping gliding target[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):322355(in Chinese).
[29] LI G, ZHANG H, TANG G. Maneuver characteristics analysis for hypersonic glide vehicles[J]. Aerospace Science and Technology, 2015, 43(6):321-328.
[30] 谢愈, 刘鲁华, 汤国建, 等. 高超声速滑翔飞行器摆动式机动突防弹道设计[J]. 航空学报, 2011, 32(12):2174-2181. XIE Y, LIU L H, TANG G J, et al. Wearing maneuver trajectory design for hypersonic glide vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(12):2174-2181(in Chinese).
[31] 张凯, 熊家军. 高超声速滑翔飞行器长期轨迹预测问题探讨[J]. 战术导弹技术, 2018(4):13-17. ZHANG K, XIONG J J. Discussion on long-term trajectory prediction of hypersonic gliding reentry vehicle[J]. Tactical Missile Technology, 2018(4):13-17(in Chinese).
[32] 叶泽浩, 毕红葵, 谭贤四, 等. 改进的平方根UKF在再入滑翔目标跟踪中的应用[J]. 宇航学报, 2019, 40(2):215-222. YE Z H, BI H K, TAN X S, et al. Improved square root UKF applying to reentry glide target tracking[J]. Journal of Astronautics, 2019, 40(2):215-222(in Chinese).
Outlines

/