[1] 张灿, 林旭斌, 胡冬冬, 等. 2018年国外高超声速飞行器技术发展综述[J]. 飞航导弹, 2019, 10(2):1-5. ZHANG C, LIN X B, HU D D, et al. Review of hypersonic technologies progress abroad in 2018[J]. Aerodynamic Missile Journal, 2019,10(2):1-5(in Chinese).
[2] ZARCHAN P. Tactical and strategic missile guidance[M]. Reston, VA:AIAA, 2012:165-166.
[3] 余名哲, 张友安, 钱进. 基于遭遇点预测的比例导引与多平台接力制导交接律设计[J]. 海军航空工程学院学报, 2010, 25(3):255-258. YU M Z, ZHANG Y A, QIAN J. Design of the proportional navigation based on hit point prediction and multi-platform relay-guidance transfer law[J]. Journal of Naval Aeronautical and Astronautical University, 2010, 25(3):255-258(in Chinese).
[4] 张友安, 马国欣, 万宇. 一种弹目遭遇点预测方法[J]. 海军航空工程学院学报, 2011, 26(5):513-516. ZHANG Y A, MA G X, WAN Y. A method to predict impact point of missile and target[J]. Journal of Naval Aeronautical and Astronautical University, 2011, 26(5):513-516(in Chinese).
[5] 秦雷. 临近空间领域面临的重大控制科学问题研究[J]. 战术导弹技术, 2017, 1(1):85-92. QING L. Research on important control scientific problems of near space hypersonic vehicles[J]. Tactical Missile Technology, 2017,1(1):85-92(in Chinese).
[6] 葛致磊, 孙琦. 交会角对制导性能的影响[J]. 宇航学报, 2008, 29(5):1492-1495. GE Z L,SUN Q. Effects of interception angle on the performance of guidance[J]. Journal of Astronautics, 2008, 29(5):1492-1495(in Chinese).
[7] 韦刚, 刘昌云, 姚小强, 等. 临近空间高超声速飞行器拦截关键问题研究[J]. 飞航导弹, 2016, 1(8):12-16. WE G, LIU C Y, YAO X Q, et al. Research on key problems for interception of near-space hypersonic vehicle[J]. Winged Missiles Journal, 2016, 1(8):12-16(in Chinese).
[8] DWIVEDI P N, BHATTACHARYA A, PADHI R. Suboptimal midcourse guidance of interceptors for high-speed targets with alignment angle constraint[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(3):860-877.
[9] KIM B S, LEE J G, HAN H S. Biased PNG law for impact with angular constraint[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(1):277-288.
[10] KIM T H, PARK B G, TAHK M J. Bias-shaping method for biased proportional navigation with terminal-angle constraint[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(6):1810-1816.
[11] KUMAR S R, RAO S, GHOSE D. Nonsingular terminal sliding mode guidance with impact angle constraints[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(4):1114-1130.
[12] KUMAR S R, RAO S, GHOSE D. Sliding-mode guidance and control for all-aspect interceptors with terminal angle constraints[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(4):1230-1246.
[13] SHAFERMAN V, SHIMA T. Linear quadratic guidance laws for imposing a terminal intercept angle[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(5):1400-1412.
[14] RYOO C K, CHO H, TAHK M J. Optimal guidance laws with terminal impact angle constraint[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(4):724-732.
[15] RYOO C K, CHO H, TAHK M J. Time-to-go weighted optimal guidance with impact angle constraints[J]. IEEE Transactions on Control Systems Technology, 2006, 14(3):483-492.
[16] TAUB I, SHIMA T. Intercept angle missile guidance under time varying acceleration bounds[J]. Journal of Guidance, Control, and Dynamics, 2005, 36(3):686-699.
[17] CHO H, RYOO C K. Implementation of optimal guidance laws using predicted missile velocity profiles[J]. Journal of Guidance, Control, and Dynamics, 1999, 22(4):579-588.
[18] LEE Y I, RYOO C K, KIM E. Optimal guidance with constraints on impact angle and terminal acceleration:AIAA-2003-5795[R]. Reston, VA:AIAA, 2003.
[19] MONDAL S, PADHI R. State and input constrained missile guidance using spectral model predictive static programming:AIAA-2018-1584[R]. Reston, VA:AIAA, 2018.
[20] CHERRY G. A general, explicit, optimizing guidance law for rocket-propelled spaceflight:AIAA-1964-0638[R]. Reston, VA:AIAA, 1964.
[21] D'SOUZA C N. An optimal guidance law for planetary landing:AIAA-1997-3709[R]. Reston, VA:AIAA, 1997.
[22] OHLMYER E, PHILLIPS C A. Generalized vector explicit guidance[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(2):261-268.
[23] ZHOU J, LEI H M, ZHANG D. Online optimal midcourse trajectory modification algorithm for hypersonic vehicle interceptions[J]. Aerospace Science and Technology, 2017, 63(4):266-277.
[24] 周觐, 雷虎民, 邵雷, 等. 拦截弹中制导最优弹道簇生成[J]. 国防科技大学学报, 2017, 39(5):171-177. ZHOU J, LEI H M, SHAO L, et al. Midcourse neighboring optimal trajectory cluster generation for interceptors[J]. Journal of National University of Defence Technology, 2017, 39(5):171-177(in Chinese).
[25] 张洪波, 黄景帅, 李广华, 等. 典型控制规律滑翔飞行器的轨迹预测方法[J]. 现代防御技术, 2017, 45(4):112-118. ZHANG H B, HUANG J S, LI G H, et al. Trajectory prediction of glide vehicle based on typical control law[J]. Modern Defence Technology, 2017, 45(4):112-118(in Chinese).
[26] 张凯, 熊家军, 李凡, 等. 基于意图推断的高超声速滑翔目标贝叶斯轨迹预测[J]. 宇航学报, 2018,39(11):1258-1265. ZHANG K, XIONG J J, LI F, et al. Bayesian trajectory prediction for a hypersonic gliding reentry vehicle based on intent inference[J]. Journal of Astronautics, 2018, 39(11):1258-1265(in Chinese).
[27] 翟岱亮, 雷虎民, 李炯, 等. 基于自适应IMM的高超声速飞行器轨迹预测[J]. 航空学报, 2016, 37(11):3466-3475. ZHAI D L, LEI H M, LI J, et al. Trajectory prediction of hypersonic vehicle based on adaptive IMM[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3466-3475(in Chinese).
[28] 李凡, 熊家军. 临近空间高超声速跳跃滑翔式目标自适应跟踪模型[J]. 航空学报, 2018, 39(12):322355. LI F, XIONG J J. Adaptive tracking model for near space hypersonic jumping gliding target[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):322355(in Chinese).
[29] LI G, ZHANG H, TANG G. Maneuver characteristics analysis for hypersonic glide vehicles[J]. Aerospace Science and Technology, 2015, 43(6):321-328.
[30] 谢愈, 刘鲁华, 汤国建, 等. 高超声速滑翔飞行器摆动式机动突防弹道设计[J]. 航空学报, 2011, 32(12):2174-2181. XIE Y, LIU L H, TANG G J, et al. Wearing maneuver trajectory design for hypersonic glide vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(12):2174-2181(in Chinese).
[31] 张凯, 熊家军. 高超声速滑翔飞行器长期轨迹预测问题探讨[J]. 战术导弹技术, 2018(4):13-17. ZHANG K, XIONG J J. Discussion on long-term trajectory prediction of hypersonic gliding reentry vehicle[J]. Tactical Missile Technology, 2018(4):13-17(in Chinese).
[32] 叶泽浩, 毕红葵, 谭贤四, 等. 改进的平方根UKF在再入滑翔目标跟踪中的应用[J]. 宇航学报, 2019, 40(2):215-222. YE Z H, BI H K, TAN X S, et al. Improved square root UKF applying to reentry glide target tracking[J]. Journal of Astronautics, 2019, 40(2):215-222(in Chinese).