FENG Yiqi
,
XIE Guoyin
,
ZHANG Bi
,
QIAO Guowen
,
GAO Shang
,
BAI Qian
. Influence of laser power and surface condition on balling behavior in selective laser melting[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019
, 40(12)
: 423089
-423089
.
DOI: 10.7527/S1000-6893.2019.23089
[1] 田宗军, 顾冬冬, 沈理达, 等. 激光增材制造技术在航空航天领域的应用与发展[J]. 航空制造技术, 2015(11):38-42. TIAN Z J, GU D D, SHEN L D, et al. Application and development of laser additive manufacturing technology in aeronautics and astronautics[J]. Aeronautical Manufacturing Technology, 2015(11):38-42(in Chinese).
[2] 王华明. 高性能大型金属构件激光增材制造:若干材料基础问题[J]. 航空学报, 2014, 35(10):2690-2698. WANG H M. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10):2690-2698(in Chinese).
[3] 李怀学, 巩水利, 孙帆, 等. 金属零件激光增材制造技术的发展及应用[J]. 航空制造技术, 2012(20):26-31. LI H X, GONG S L, SUN F, et al. Development and application of laser additive manufacturing for metal component[J]. Aeronautical Manufacturing Technology, 2012(20):26-31(in Chinese).
[4] 安超, 张远明, 张金松, 等. 选区激光熔化成型钴铬合金致密度与孔隙缺陷实验研究[J]. 应用激光, 2018, 38(5):730-737. AN C, ZHANG Y M, ZHANG J S, et al. Experimental study on density and pore defects of Cobalt-chromium alloy fabricated by selective laser melting[J]. Applied Laser, 2018, 38(5):730-737(in Chinese).
[5] 文舒, 董安平, 陆燕玲, 等. GH536高温合金选区激光熔化温度场和残余应力的有限元模拟[J]. 金属学报, 2018, 54(3):393-403. WEN S, DONG A P, LU Y L, et al. Finite element simulation of the temperature field and residual stress in GH536 superalloy treated by selective laser melting[J]. Acta Metallurgica Sinica, 2018, 54(3):393-403(in Chinese).
[6] CASALINO G, CAMPANELLI S L, CONTUZZI N, et al. Experimental investigation and statistical optimization of the selective laser melting process of a maraging steel[J]. Optics & Laser Technology, 2015(65):151-158.
[7] BAI Y, YANG Y, WANG D, et al. Influence mechanism of parameters process and mechanical properties evolution mechanism of maraging steel 300 by selective laser melting[J]. Materials Science and Engineering:A, 2017, 703:116-123.
[8] XIA M, GU D, YU G, et al. Influence of hatch spacing on heat and mass transfer, thermodynamics and laser processability during additive manufacturing of Inconel 718 alloy[J]. International Journal of Machine Tools and Manufacture, 2016, 109:147-157.
[9] XIA M, GU D, YU G, et al. Porosity evolution and its thermodynamic mechanism of randomly packed powder-bed during selective laser melting of Inconel 718 alloy[J]. International Journal of Machine Tools and Manufacture, 2017, 116:96-106.
[10] XIA M, GU D, YU G, et al. Selective laser melting 3D printing of Ni-based superalloy:understanding thermodynamic mechanisms[J]. Science Bulletin, 2016, 61(13):1013-1022.
[11] CHEN H, WEI Q, WEN S, et al. Flow behavior of powder particles in layering process of selective laser melting:Numerical modeling and experimental verification based on discrete element method[J]. International Journal of Machine Tools and Manufacture, 2017, 123:146-159
[12] KHAIRALLAH S A, ANDERSON A T, RUBENCHIK A, et al. Laser powder-bed fusion additive manufacturing:Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones[J]. Acta Materialia, 2016, 108:36-45.
[13] PANWISAWAS C, QIU C, ANDERSON M J, et al. Mesoscale modelling of selective laser melting:Thermal fluid dynamics and microstructural evolution[J]. Computational Materials Science, 2017, 126:479-490.
[14] ZHOU J, ZHANG Y, CHEN J K. Numerical simulation of random packing of spherical particles for powder-based additive manufacturing[J]. Manufacturing Science and Engineering, 2009, 131(3):31004.
[15] XIANG Z, YIN M, DENG Z, et al. Simulation of forming process of powder bed for additive manufacturing[J]. Journal of Manufacturing Science and Engineering, 2016, 138(8):81002.
[16] SUTTON A T, KRIEWALL C S, LEU M C, et al. Powder characterisation techniques and effects of powder characteristics on part properties in powder-bed fusion processes[J]. Virtual and Physical Prototyping, 2017, 12(1):3-29.
[17] WEI P, WEI Z, CHEN Z, et al. Thermal behavior in single track during selective laser melting of AlSi10Mg powder[J]. Applied Physics A, 2017, 123(9):604.
[18] CHO J, NA S. Implementation of real-time multiple reflection and Fresnel absorption of laser beam in keyhole[J]. Journal of Physics D:Applied Physics, 2006, 39(24):5372-5378.
[19] 林会杰, 沈理达, 姜金辉, 等. 选区激光熔化成形悬垂结构特征模拟分析[J]. 航空学报, 2018, 39(7):421897. LIN H J, SHEN L D, JIANG J H, et al. Simulation analysis of features of overhanging structure fabricated by selective laser melting[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7):421897(in Chinese).
[20] GUSAROV A V, SMUROV I. Modeling the interaction of laser radiation with powder bed at selective laser melting[J]. Physics Procedia, 2010, 5:381-394.
[21] KRUTH J P, FROYEN L, Van VAERENBERGH J, et al. Selective laser melting of iron-based powder[J]. Journal of Materials Processing Technology, 2004, 149(1-3):616-622.