Material Engineering and Mechanical Manufacturing

Residual stress profile and fatigue life of 7050 aluminum plate with groove under laser shot peening

  • GOU Lei ,
  • MA Yu'e ,
  • DU Yong ,
  • LIU Lei ,
  • GUO Chao ,
  • LI Gang
Expand
  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. AVIC The First Aircraft Institute, Xi'an 710089, China

Received date: 2019-04-18

  Revised date: 2019-05-07

  Online published: 2019-06-06

Supported by

National Natural Science Foundation of China (91860128, 11572250)

Abstract

Laser Shock Peening (LSP) is an important means to improve the structural fatigue performance. It is difficult to simulate the multi-point impact process of complex structures by traditional numerical simulation methods. In this paper, a continuous dynamic impact method is used to simulate the LSP of 7050 aluminum plate with groove. The stable residual stress field after impacts is obtained. By comparing with the measured values of residual stress, the higher accuracy and efficiency of this method are verified. Four strain models based on the critical plane method, the normal strain model, the shear strain model, the BM model, and the SWT model are used to predict fatigue life of unreinforced and reinforced samples. The fatigue tests of strengthened and unreinforced samples are carried out and their fatigue lives are obtained. The results showed that predicted lives are in good agreement with experimental results. After mean stress correction for unreinforced sample, the errors of the first three models were 31.2%, 22.6%, and 40.7%, while the result of SWT model is obviously too conservative. After the maximum normal stress correction for strengthened sample, the errors are 1.84%, 24.0%, and 46.4%, while the result of SWT model is obviously too dangerous.

Cite this article

GOU Lei , MA Yu'e , DU Yong , LIU Lei , GUO Chao , LI Gang . Residual stress profile and fatigue life of 7050 aluminum plate with groove under laser shot peening[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(12) : 423096 -423096 . DOI: 10.7527/S1000-6893.2019.23096

References

[1] MAKSIMENKO V P. Stress-strain analysis of smooth and ribbed shells under local loads[J]. International Applied Mechanics, 2003, 39(5):599-606.
[2] MONTROSS C S, WEI T, YE L, et al. Laser shock processing and its effects on microstructure and properties of metal alloys:a review[J]. International Journal of Fatigue, 2002, 24(10):1021-1036.
[3] PEYRE P, FABBRO R. Laser shock processing:A review of the physics and applications[J]. Optical & Quantum Electronics, 1995, 27(12):1213-1229.
[4] 高玉魁. GH742高温合金激光冲击强化和喷丸强化残余应力[J]. 稀有金属材料与工程, 2016, 45(9):2347-2351. GAO Y K. Residual stresses of GH742 superalloy induced by laser peening and shot peening[J]. Rare Metal Materials and Engineering, 2016, 45(9):2347-2351(in Chinese).
[5] 高玉魁, 仲政, 雷力明. 激光冲击强化和喷丸强化对FGH97高温合金疲劳性能的影响[J]. 稀有金属材料与工程, 2016, 45(5):1230-1234. GAO Y K, ZHONG Z, LEI L M. Influence of laser peening and shot peening on fatigue properties of FGH97 superalloy[J]. Rare Metal Materials and Engineering, 2016, 45(5):1230-1234(in Chinese).
[6] HATAMLEH O, LYONS J, FORMAN R. Laser and shot peening effects on fatigue crack growth in friction stir welded 7075-T7351 aluminum alloy joints[J]. International Journal of Fatigue, 2007, 29(3):421-434.
[7] JIANG S Q, ZHOU J Z, FAN Y J, et al. Prediction on residual stress and fatigue life of magnesium alloy treated by laser shot peening[J]. Materials Science Forum, 2009, 626-627:393-398.
[8] WILLIAM B, ROBERT B. Finite element simulation of laser shock peening[J]. International Journal of Fatigue, 1999, 21(7):719-724.
[9] ROBERT A B, WILLIAM R B, STEVEN E, et a1. Prediction and characterization of residual stresses from laser shock peening[J]. International Journal of Fatigue, 2012, 36(1):96-108.
[10] BROWN M W, MILLER K J. A theory for fatigue failure under multiaxial stress and strain conditions[J]. Proceedings of the Institution of Mechanical Engineers, 1973, 187(65):745-755.
[11] DING K. Three-dimensional dynamic finite element analysis of multiple laser shock peening processes[J]. Surface Engineering, 2003, 19(5):351-358.
[12] 花国然, 蒋苏州, 曹宇鹏, 等. 激光冲击7050铝合金表面"残余应力洞"的模拟[J]. 金属热处理, 2017, 42(7):154-157. HUA G R, JIANG S Z, CAO Y P, et al. Numerical simulation of residual stress hole on 7050 aluminum alloy under laser shock[J]. Heat Treatment of Metals, 2017, 42(7):154-157(in Chinese).
[13] 胡永祥, 姚振强, 胡俊. 激光冲击强化残余应力场的数值仿真分析[J]. 中国激光, 2006, 33(6):846-851. HU Y X, YAO Z Q, HU J. Numerical simulation of residual stress field for laser shock processing[J]. Chinese Journal of Lasers, 2006, 33(6):846-851(in Chinese).
[14] FABBRO R, FOURNIER J, BALLARD P, et al. Physical study of laser-produced plasma in confined geometry[J]. Journal of Applied Physics, 1990, 68(2):775-784.
[15] 余天宇, 戴峰泽, 张永康, 等. 平顶光束激光冲击2024铝合金诱导残余应力场的模拟与实验[J]. 中国激光, 2012, 39(10):25-31. YU T Y, DAI F Z, ZHANG Y K, et al. Simulation and experimental study on residual stress field of 2024 aluminum alloy induced by flat-top laser beam[J]. Chinese Journal of Lasers,2012, 39(10):25-31(in Chinese).
[16] TENG T L, FUNG C P, CHANG P H. Effect of residual stresses on the fatigue of butt joints using thermal elastic-plastic and multiaxial fatigue theory[J]. Engineering Failure Analysis, 2003, 10(2):131-151.
[17] 周昊, 刘英芳, 刘刚, 等. 考虑残余应力的焊接结构多轴疲劳准则[J]. 焊接学报, 2017, 38(11):41-46. ZHOU H, LIU Y F, LIU G, et al. Multiaxial fatigue criterion for welded structures considering residual stress[J]. Transactions of the China Welding Institution, 2017, 38(11):41-46(in Chinese).
[18] 王文利, 瞿伟廉, 皮永林. 考虑焊接残余应力的桅杆结构拉耳节点风致疲劳裂纹萌生寿命评定[J]. 土木工程学报, 2010, 43(s2):22-27. WNAG W L, QU W L, PI Y L. Assessment of wind induced fatigue crack initiation life at guyed mast ear-plate joints considering welding residual stresses[J]. China Civil Engineering Journal, 2010, 43(s2):22-27(in Chinese).
[19] SMITH R N, WATSON P, TOPPER T H. A stress-strain parameter for the fatigue of metals[J]. Journal of Materials, 1970, 5(4):767-778.
[20] FATEMI A, SOCIE D F. A critical plane approach to multiaxial fatigue damage including out of phase loading[J]. Fatigue & Fracture of Engineering Materials& Structures, 1988, 11(3):149-165.
[21] WANG C H, BROWN M W. Life prediction techniques for variable amplitude multiaxial fatigue-part1:theories[J]. ASME Journal of Engineering Material and Technology, 1996, 118(2):367-370.
[22] 刘俭辉, 王生楠, 黄新春, 等. 基于损伤力学-临界面法预估多轴疲劳寿命[J]. 机械工程学报, 2015, 51(20):120-127. LIU J H, WANG S N, HUANG X C, et al. Multiaxial fatigue life prediction based on damage mechanics and critical plane method[J]. Journal of Mechanical Engineering, 2015, 51(20):120-127(in Chinese).
[23] 刘俭辉. 基于损伤力学-临界面法的多轴疲劳寿命预估方法研究[D]. 西安:西北工业大学, 2015:53-62. LIU J H. Multiaxial fatigue life prediction based on damage mechanics and critical plane method damage[D]. Xi' an:Northwestern Polytechnical University, 2015:53-62(in Chinese).
[24] SUSMEL L. A simple and efficient numerical algorithm to determine the orientation of the critical plane in multiaxial fatigue problems[J]. International Journal of Fatigue, 2010, 32(11):1875-1883.
[25] CARPINTERI A, SPAGNOLI A, VANTADORI S, et al. Structural integrity assessment of metallic components under multiaxial fatigue:The c-s criterion and its evolution[J]. Fatigue & Fracture of Engineering Materials & Structures, 2013, 36(9):870-883.
[26] THOMAS V H. Probabilistic modeling and simulation of metal fatigue life prediction[D]. Monterey:Naval Post Graduate School, 2002:67-70.
Outlines

/