Special Column of BWB Civil Aircraft Technology

Research progress and prospect for conceptual and aerodynamic technology of blended-wing-body civil aircraft

  • WANG Gang ,
  • ZHANG Binqian ,
  • ZHANG Minghui ,
  • SANG Weimin ,
  • YUAN Changsheng ,
  • LI Dong
Expand
  • School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2019-03-25

  Revised date: 2019-04-03

  Online published: 2019-05-10

Supported by

The Fundamental Research Funds for the Central Universities (3102019JC009, G2016KY0002)

Abstract

It is well known that the Blended-Wing-Body (BWB) layout is a mainstream scheme for the next-generation subsonic civil aircraft. The research of BWB is accelerating, and is expected to be applied to engineering. On the basis of reviewing the development history of BWB civil aircraft, the differences between Flying Wing (FW) and BWB layouts are explained from different aspects, clarifying the conceptual features and applicational scopes of BWB. This paper focuses on the technical challenges and countermeasures in BWB conceptual and aerodynamic designs, analyzing the technical bottleneck and evolution of design ideas, the key technologies of conceptual design such as the new structure, weight estimation and airworthiness compliance, the key technologies of aerodynamic configuration design such as the aerodynamic configuration design principles, and the trade-off between high and low speed performance. Moreover, the propulsion airframe integration problems of BWB layout including the aircraft-engine interference, the integrated design, and the new engine technology application are discussed. Then the noise reduction technology and the derived design contradiction of BWB, and conceptual design strategies considering noise requirements are discussed. Finally, the development trend of BWB civil aircraft is prospected from the aspects of technological progress and engineering achievability.

Cite this article

WANG Gang , ZHANG Binqian , ZHANG Minghui , SANG Weimin , YUAN Changsheng , LI Dong . Research progress and prospect for conceptual and aerodynamic technology of blended-wing-body civil aircraft[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(9) : 623046 -623046 . DOI: 10.7527/S1000-6893.2019.23046

References

[1] AIRBUS G M F. Growing horizons 2017-2036[R]. Toulouse:Airbus S.A.S., 2017.
[2] TINSETH R. Current market outlook 2017-2036[R]. Seattle, WA:Boeing Commercial Airplanes, 2017.
[3] NICKOL C, MCCULLERS L. Hybrid wing body configuration system studies:AIAA-2009-0931[R]. Reston, VA:AIAA, 2009.
[4] CLEAN SKY. Clean Sky 2 joint undertaking development plan[EB/OL].[2018-11-03].http://www.cleansky.eu/key-documents.
[5] CHERYL A, HELHE P, PIOTR D. Final evaluation of the clean sky joint undertaking (2008-2016) operating under FP7[EB/OL].[2018-11-03]. http://www.cleansky.eu/key-documents.
[6] HILEMAN J I, SPAKOVSZKY Z S, DRELA M, et al. Airframe design for silent fuel-efficient aircraft[J]. Journal of Aircraft, 2010, 47(3):956-969.
[7] CESARE A, SCHWARTZ H E, HILEMAN J I. Assessment of technologies for the silent aircraft initiative[J]. Journal of Propulsion and Power, 2009, 25(6):1153-1162.
[8] TONG M T, JONES S M, HALLER W J, et al. Engine conceptual design studies for a hybrid wing body aircraft[C]//ASME Turbo Expo 2009:Power for Land, Sea, and Air. New York:ASME, 2009.
[9] LIOU M S, KIM H, LIOU M F. Challenges and progress in aerodynamic design of hybrid wing body aircraft with embedded engines:NASA/TM-2016-218309[R]. Cleveland, OH:Glenn Research Center, 2016.
[10] MODY P, SATO S, HALL D, et al. Conceptual design of an N+3 hybrid wing body subsonic transport:AIAA-2010-4812[R]. Reston, VA:AIAA, 2010.
[11] BONET J T, SCHELLENGE H G, RAWDON B K, et al. Environmentally Responsible Aviation (ERA) Project N+2 advanced vehicle concepts study and conceptual design of Subscale Test Vehicle (STV) final report:CR-2011-216519[R]. Edwards:Dryden Flight Research Center, 2011.
[12] 王元元. 民用飞机将要迎来新的技术跨越[J]. 国际航空, 2016(10):30-33. WANG Y Y. Civil aircraft will usher in new technological breakthroughs[J]. International Aviation, 2016(10):30-33(in Chinese).
[13] 张帅, 夏明, 钟伯文. 民用飞机气动布局发展演变及其技术影响因素[J]. 航空学报, 2016, 37(1):30-44. ZHANG S, XIA M, ZHONG B W. Evolution and technical factors influencing civil aircraft aerodynamic configuration[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):30-44(in Chinese).
[14] LIEBECK R H. Design of the blended wing body subsonic transport[J]. Journal of Aircraft, 2004, 41(1):10-25.
[15] 朱自强, 王晓璐, 吴宗成, 等. 民机的一种新型布局形式——翼身融合体飞机[J]. 航空学报, 2008, 29(1):49-59. ZHU Z Q, WANG X L, WU Z C, et al. A new type of transport-Blended wing body aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(1):49-59(in Chinese).
[16] OKONKWO P, SMITH H. Review of evolving trends in blended wing body aircraft design[J]. Progress in Aerospace Sciences, 2016, 82:1-23.
[17] 朱自强, 王晓璐, 吴宗成, 等. 高经济性静音中航程民机设计方法讨论[J]. 航空学报, 2008, 29(3):562-572. ZHU Z Q, WANG X L, WU Z C, et al. Discussion of design methods for silent and fuel efficient medium range civil transport[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3):562-572(in Chinese).
[18] BROWN M, VOS R. Conceptual design and evaluation of blended-wing body aircraft:AIAA-2018-0522[R]. Reston, VA:AIAA, 2018.
[19] REIST T A, ZINGG D W. Aerodynamic shape optimization of a blended-wing-body regional transport for a short range mission:AIAA-2013-2414[R]. Reston, VA:AIAA, 2013.
[20] KANAZAKI M, HANIDA R, NARA T, et al. Challenge of design exploration for small blended wing body using unstructured flow solver[J]. Computers & Fluids, 2013, 85(10):71-77.
[21] THOMAS R H, BURLEY C L, LOPES L V, et al. System noise assessment and the potential for low noise hybrid wing body aircraft with open rotor propulsion:AIAA-2014-0258[R]. Reston, VA:AIAA, 2014.
[22] MULYANTO T, LUTHFI NURHAKIM M. Conceptual design of blended wing body business jet aircraft[J]. Journal of Kones, 2013(20):299-306.
[23] LIEBECK R, PAGE M, RAWDON B. Blended-wing-body subsonic commercial transport:AIAA-1998-0438[R]. Reston, VA:AIAA, 1998.
[24] WOOD R M, BAUER X S. Flying wings/flying fuselages:AIAA-2001-0311[R]. Reston, VA:AIAA, 2001.
[25] WOOD R M. The contributions of vincent justus burnelli:AIAA-2003-0292[R]. Reston, VA:AIAA, 2003.
[26] KATZ J, BYRNE S, HAHL R. Stall resistance features of lifting-body airplane configurations[J]. Journal of Aircraft, 1999, 36(2):471-474.
[27] SMITH H. College of aeronautics blended wing body development programme[C]//ICAS, 2000.
[28] MORRIS A J. MOB-A European distributed multi-disciplinary design and optimization project:AIAA-2002-5444[R]. Reston, VA:AIAA, 2002.
[29] TRITTLER M, FICHTER W, VOITNITSCHMANN R, et al. Preliminary system identification of the blended wing body flight demonstrator VELA 2 from flight data:AIAA-2008-6896[R]. Reston, VA:AIAA, 2008.
[30] BOLSUNOVSKY A L, BUZOVERYA N P, GUREVICH B I, et al.Flying wing-Problems and decisions[J]. Aircraft Design, 2001, 4(4):193-219.
[31] RISCH T, COSENTINO G, REGAN C, et al. X-48B flight test progress overview:AIAA-2009-0934[R]. Reston, VA:AIAA, 2009.
[32] 何开锋, 毛仲君, 汪清, 等. 缩比模型演示验证飞行试验及关键技术[J]. 空气动力学学报, 2017, 35(5):671-679. HE K F, MAO Z J, WANG Q, et al. Demonstration and validation flight test of scaled aircraft model and its key technologies[J]. Acta Aerodynamica Sinica, 2017, 35(5):671-679(in Chinese).
[33] 宋笔锋, 张彬乾, 韩忠华. 大型客机总体设计准则与概念创新[J]. 航空学报, 2008, 29(3):583-595. SONG B F, ZHANG B Q, HAN Z H. The study of concept design criteria for large-scale passenger aircraft with new technologies[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3):583-595(in Chinese).
[34] 陈迎春, 张美红, 张淼, 等. 大型客机气动设计综述[J]. 航空学报, 2019,40(1):1-17. CHEN Y C, ZHANG M H, ZHANG M, et al. Review of large civil aircraft aerodynamic design[J]. Acta Aeronautica et Astronautica Sinica, 2019,40(1):1-17(in Chinese).
[35] GOLDBERG C, NALIANDA D, SINGH R. Techno-economic and environmental risk assessment of a blended wing body with distributed propulsion:AIAA-2015-4024[R]. Reston, VA:AIAA, 2015.
[36] 张曙光, 陆艳辉, 巩磊, 等. 250座级翼身融合无尾布局客机操稳特性设计研究[J]. 航空学报, 2011, 32(10):1761-1769. ZHANG S G, LU Y H, GONG L, et al. Research on design of stability and control of a 250-seat tailless blended-wing-body civil transport aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(10):1761-1769(in Chinese).
[37] 赵志高, 张曙光. BWB客机经济性相关设计参数的影响分析[J]. 北京航空航天大学学报, 2011, 37(8):937-942. ZHAO Z G, ZHANG S G. Analysis of effects of BWB airliner design parameters on its economic profitability[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(8):937-942(in Chinese).
[38] CUI R, LI Q, PAN T, et al. Streamwise-body-force-model for rapid simulation combining internal and external flow fields[J]. Chinese Journal of Aeronautics, 2016,29(5):1205-1212.
[39] 邓海强, 余雄庆. 亚声速翼身融合无人机概念外形参数优化[J]. 航空学报, 2013, 34(5):1200-1208. DENG H Q, YU X Q. Configuration optimization of subsonic blended wing body UAV conceptual design[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5):1200-1208(in Chinese).
[40] 蒋瑾, 钟伯文, 符松. 翼身融合布局飞机总体参数对气动性能的影响[J]. 航空学报, 2015, 36(1):278-289. JIANG J, ZHONG B W, FU S. Influence of overall configuration parameters on aerodynamic characteristics of a blended-wing-body aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):278-289(in Chinese).
[41] LI P F, ZHANG B Q, CHEN Y C, et al. Aerodynamic design methodology for blended wing body transport[J]. Chinese Journal of Aeronautics, 2012, 25(4):508-516.
[42] CHU H B, ZHANG B Q, CHEN Y C, et al. Investigation of micro vortex generators on controlling flow separation over SCCH high-lift configuration[J]. Science China:Technological Science, 2012, 55(7):1943-1953.
[43] 李沛峰, 张彬乾, 陈迎春. 减小翼型激波阻力的鼓包流动控制技术[J]. 航空学报,2011,32(6):971-977. LI P F, ZHANG B Q, CHEN Y C. Wave drag reduction of airfoil with shock control bump[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6):971-977(in Chinese).
[44] 李沛峰, 张彬乾, 陈迎春. 基于工程的跨声速机翼两步优化设计方法[J]. 航空学报,2011, 32(12):2153-2162. LI P F, ZHANG B Q, CHEN Y C. A two-step optimization method of transonic wing design for engineering application[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(12):2153-2162(in Chinese).
[45] 褚胡冰, 张彬乾, 陈迎春,等. 微型后缘装置增升效率及几何参数影响研究[J].航空学报,2012, 33(3):381-389. CHU H B, ZHANG B Q, CHEN Y C, et al. Investigation on mini-ted efficiency and impact of its geometrical parameters[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(3):381-389(in Chinese).
[46] 李路路, 张彬乾, 李沛峰, 等. 大型客机无尾布局航向组合舵面控制技术研究[J]. 飞行力学, 2013, 31(5):450-454. LI L L, ZHANG B Q, LI P F, et al. Research on control technology of combined control surface for large tailless civil aircraft[J]. Flight Dynamics, 2013, 31(5):450-454(in Chinese).
[47] 李沛峰, 张彬乾, 陈迎春, 等. 无尾布局翼型的DISC设计研究[J]. 飞行力学, 2012, 39(4):49-52. LI P F, ZHANG B Q, CHEN Y C, et al. Airfoil design for tailless configurations using DISC algorithm[J]. Flight Dynamics, 2012, 39(4):49-52(in Chinese).
[48] 李沛峰, 张彬乾, 陈迎春. 基于响应面和遗传算法的翼型优化设计方法研究[J]. 西北工业大学学报,2012, 30(3):395-400. LI P F, ZHANG B Q, CHEN Y C. An effective transonic airfoil optimization method using response surface model (RSM)[J]. Journal of Northwestern Polytechnical University, 2012, 30(3):395-400(in Chinese).
[49] 顾文婷, 陈迎春, 马坤, 等. 基于自由变形方法的翼身融合布局民机翼型优化设计[J]. 西北工业大学学报, 2017, 35(S1):70-76. GU W T, CHEN Y C, MA K, et al. Airfoil optimization for blended wing body civil transport based on free form deformation[J]. Journal of Northwestern Polytechnical University, 2017, 35(S1):70-76(in Chinese).
[50] SHEN D, ZHANG B Q, CHEN Y C. On belly-flap for pitch control at transonic airfoil[J]. International Journal of Plant Engineering and Management, 2011, 16(2):77-83.
[51] 田晓虎, 张彬乾, 沈冬. 引入最优顶点的混合方法及其在翼型优化设计中的应用[J]. 机械科学与技术, 2012, 31(12):124-127. TIAN X H, ZHANG B Q, SHEN D. Hybrid optimization method based on the best vertex and its application to optimization design of airfoil[J]. Mechanical Science and Technology for Aerospace Engineering, 2012, 31(12):124-127(in Chinese).
[52] ZHANG M H, CHEN Z L, ZHAGN B Q. A conceptual design platform for blended wing-body transports[C]//30th Congress of the International Council of the Aeronautical Sciences, 2016.
[53] GU W T, CHEN Z L, ZHAGN B Q. Physically-based multidisciplinary design optimization framework coupling airframe and propulsion[C]//30th Congress of the International Council of the Aeronautical Sciences,2016.
[54] 李沛峰, 张彬乾, 陈真利, 等. 一种无尾翼身融合飞机的中央机体:ZL 201210053760.X[P]. 2013-12-02. LI P F, ZHANG B Q, CHEN Z L, et al. A tailless body fused to the central body of an aircraft:ZL 201210053760.X[P]. 2013-12-02(in Chinese).
[55] 褚胡冰, 张彬乾, 陈真利, 等. 一种无尾飞机的组合舵面:ZL 201310005860.X[P]. 2016-04-24. CHU H B, ZHANG B Q, CHEN Z L, et al. A combined control surface of a tailless aircraft:ZL 201310005860.X[P]. 2016-04-24(in Chinese).
[56] 李沛峰, 张彬乾, 陈真利, 等. 一种采用混合翼身的飞行器气动外形:ZL 201210143930.3[P]. 2014-03-12. LI P F, ZHANG B Q, CHEN Z L, et al. An aircraft aerodynamic profile with blended wing body:ZL 201210-143930.3[P]. 2014-03-12(in Chinese).
[57] 吴立新, 左重, 刘平生,等. 无尾飞翼气动布局是UCAV总体设计的最佳选择[J]. 国际航空, 2003(1):42-44. WU L X, ZUO C, LIU P S,et al. Tailless flying wing configuration:The best choice for UCAV[J]. International Aviation, 2003(1):42-44(in Chinese).
[58] 朱自强, 吴宗成,陈迎春,等. 民机空气动力设计先进技术[M]. 上海:上海交通大学出版社, 2013:17-27, 96-98. ZHU Z Q,WU Z C, CHEN Y C, et al. Advanced technology of aerodynamic design for commercial aircraft[M]. Shanghai:Shanghai Jiao Tong University Press, 2013:17-27, 96-98(in Chinese).
[59] ACTION J. Structural layout of a hybrid wing body transport:AIAA-2017-0101[R]. Reston, VA:AIAA, 2017.
[60] WICK A T, HOOKER J R, CLARK C M. Powered low speed testing of the hybrid wing body:AIAA-2017-0100[R]. Reston, VA:AIAA, 2017.
[61] ODLE R C, ROMAN D, RAWDON B K. Blended wing body cargo airplane:US 8366050 B2[P]. 2013.
[62] PRAKASH I, MUKHERJEE P, RAVICHANDRAKUMAR K B. Design and analysis pertaining to the aerodynamic and stability characteristics of a hybrid wing-body cargo aircraft[J]. INCAS Bulletin, 2017, 9(3):71.
[63] GARMENDIA D C, CHAKRABORTY I, TRAWICK D R, et al. Assessment of electrically actuated redundant control surface layouts for a hybrid wing body concept:AIAA-2014-2428[R]. Reston, VA:AIAA, 2014.
[64] WILDSCHEK A. Flight dynamics and control related challenges for design of a commercial blended wing body aircraft:AIAA-2014-0599[R]. Reston, VA:AIAA, 2014.
[65] COLLIER F, THOMAS R, BURLEY C, et al. Environmentally responsible aviation-real solutions for environmental challenges facing aviation[C]//ICAS, 2010.
[66] NASA Langley Research Center. NASA N+3 MIT team final review[EB/OL]. (2018-10-15)[2019-06-12]. http://web.mit.edu/drela/Public/N+3/Final_slides.pdf.
[67] GUY N. Boeing ponders reviving X-48 for new tests[EB/OL]. (2016-02-29)[2018-10-15]. http://aviationweek.com/commercial-aviation/boeing-ponders-reviving-x-48-new-tests.
[68] VOSKUIJL M, ROCCA G, DIRCKEN F. Controllability of blended wing body aircraft[C]//Proceedings of the 26th International Congress of the Aeronautical Sciences, ICAS 2008, including the 8th AIAA Aviation Technology, Integration and Operations (AIO) Conference, 2008.
[69] WILDSCHEK A, HAVAR T, PLÖTNER K. An all-composite, all-electric, morphing trailing edge device for flight control on a blended-wing-body airliner[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2010, 224(1):1-9.
[70] HAGEMAN R. Rudder incorporated winglet design for blended wing body aircraft[D]. Delft:Delft University of Technology, 2016.
[71] NASIR R E M, MAZLAN N S C, ALI Z M, et al. A blended wing body airplane with a close-coupled, tilting tail[J]. IOP Conference Series:Materials Science and Engineering, 2016, 152(1):2021.
[72] NASIR R E M, KUNTJORO W, WISNOE W. Aerodynamic, stability and flying quality evaluation on a small blended wing-body aircraft with canard foreplanes[J]. Procedia Technology, 2014(15):784-792.
[73] STAELENS Y, BLACKWELDER R, PAGE M. Novel pitch control effectors for a blended wing body airplane in takeoff and landing configuration:AIAA-2007-0068[R]. Reston, VA:AIAA, 2007.
[74] HILEMAN J I, SPAKOVSZKY Z S, DRELA M, et al. Airframe design for "silent aircraft":AIAA-2007-0453[R]. Reston, VA:AIAA, 2007.
[75] ALMOSNINO D. A low subsonic study of the NASA N2A hybrid wing-body using an inviscid Euler-adjoint solver:AIAA-2016-3267[R]. Reston, VA:AIAA, 2016.
[76] KAWAI R T. Acoustic prediction methodology and test validation for an efficient low-noise hybrid wing body subsonic transport:NF1676L-14465[R]. Washington, D.C.:NASA Langley Research Center, 2011.
[77] 王元元. 波音持续深化BWB布局研究[EB/OL]. (2018-04-08)[2018-11-03].http://www.aeroinfo.com.cn/Item/22455.aspx. WANG Y Y. Boeing continues to deepen BWB layout research[EB/OL]. (2018-04-08)[2018-11-03].http://www.aeroinfo.com.cn/Item/22455.aspx (in Chinese).
[78] FELDSTEIN A W, LAZZARA D, PRINCEN N, et al. Model uncertainty:A challenge in nonlinear coupled multidisciplinary system design:AIAA-2018-0652[R]. Reston, VA:AIAA, 2018.
[79] LYU Z, MARTINS J. Aerodynamic shape optimization of a blended-wing-body aircraft:AIAA-2013-0283[R]. Reston, VA:AIAA, 2013.
[80] LYU Z, MARTINS J. RANS-based aerodynamic shape optimization of a blended-wing-body aircraft:AIAA-2013-2586[R]. Reston, VA:AIAA, 2013.
[81] LYU Z, MARTINS J. Aerodynamic design optimization studies of a blended-wing-body aircraft[J]. Journal of Aircraft, 2014, 51(5):1604-1617.
[82] REIST T A, ZINGG D W. Optimization of the aerodynamic performance of regional and wide-body-class blended wing-body aircraft:AIAA-2015-3292[R]. Reston, VA:AIAA, 2015.
[83] NICKOL C. Hybrid wing body configuration scaling study:AIAA-2012-0337[R]. Reston, VA:AIAA, 2012.
[84] REIST T A, ZINGG D W. Aerodynamic design of blended wing-body and lifting-fuselage aircraft:AIAA-2016-3874[R]. Reston, VA:AIAA, 2016.
[85] REIST T A, ZINGG D W. Aerodynamically optimal regional aircraft concepts:Conventional and blended-wing-body designs:AIAA-2014-0905[R]. Reston, VA:AIAA, 2014.
[86] YANG S, PAGE M, SMETAK E J. Achievement of NASA New Aviation Horizons N+2 goals with a blended-wing-body X-Plane designed for the regional jet and single-aisle jet markets:AIAA-2018-0521[R]. Reston, VA:AIAA, 2018.
[87] DEHPANAH P, NEJAT A. The aerodynamic design evaluation of a blended-wing-body configuration[J]. Aerospace Science and Technology, 2015, 43:96-110.
[88] BROWN M. Conceptual design of blended wing body airliners within a semi-automated design framework[D]. Delft:Delft University of Technology, 2017.
[89] LIOU M F, KIM H, LEE B, et al. Aerodynamic design of the hybrid wing body propulsion-airframe integration:GRC-E-DAA-TN43200[R]. Cleveland, OH:NASA Glenn Research Center, 2017.
[90] IKEDA T. Aerodynamic analysis of a blended-wing-body aircraft configuration[D]. Melbourne:RMIT University, 2006:80,100.
[91] 廖慧君, 张曙光. 翼身融合布局客机的客舱设计[J]. 北京航空航天大学学报, 2009, 35(8):986-989. LIAO H J, ZHANG S G. Design of cabin layout for blended wing body passenger transports[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(8):986-989(in Chinese).
[92] 中国民用航空局. 运输类飞机适航标准:CCAR-25[S]. 北京:中国民用航空局, 1985. Civil Aviation Administration of China. Transport airplane airworthiness criterion:CCAR-25[S]. Beijing:Civil Aviation Administration of China, 1985(in Chinese).
[93] NICKOL C L. Silent aircraft initiative concept risk assessment:NASA/TM-2008-215112[R]. Washington, D.C.:NASA Langley Research Center, 2008.
[94] LAUGHLIN T, CORMAN J, MAVRIS D. A parametric and physics-based approach to structural weight estimation of the hybrid wing body aircraft:AIAA-2013-1082[R]. Reston, VA:AIAA, 2013.
[95] GERN F H. Conceptual design and structural analysis of an open rotor hybrid wing body aircraft:AIAA-2013-1688[R]. Reston, VA:AIAA, 2013.
[96] VELICKI A, THRASH P, JEGLEY D. Airframe development for the hybrid wing body aircraft:AIAA-2009-0932[R]. Reston, VA:AIAA, 2009.
[97] MUKHOPADHYAY V. Structural concepts study of non-circular fuselage configurations:AIAA-1996-WAC-67[R]. Washington, D.C.:NASA Langley Research Center, 1996.
[98] MUKHOPADHYAY V. Blended wing body (BWB) fuselage structural design for weight reduction:AIAA-2005-2349[R]. Reston, VA:AIAA, 2005.
[99] JEGLEY D C, VELICKI A. Development of the PRSEUS multi-bay pressure box for a hybrid wing body vehicle:AIAA-2015-1871[R]. Reston, VA:AIAA, 2015.
[100] VELICKI A, THRASH P. Advanced structural concept development using stitched composites:AIAA-2008-2329[R]. Reston, VA:AIAA, 2008.
[101] SCHMIDT K, VOS R. A semi-analytical weight estimation method for oval fuselages in conventional and novel aircraft:AIAA-2014-0026[R]. Reston, VA:AIAA, 2014.
[102] HOWE D. Blended wing body airframe mass prediction[J]. Proceedings of the Institution of Mechanical Engineers Part G:Journal of Aerospace Engineering, 2001, 215(6):319-331.
[103] GILES G. Equivalent plate modeling for conceptual design of aircraft wing structures[C]//Aircraft Engineering, Technology, and Operations Congress, 1995:3945.
[104] KIMMEL W M, BRADLEY K R. A sizing methodology for the conceptual design of blended-wing-body transports:NASA/CR-2004-213016[R].Washington, D.C.:NASA Langley Research Center, 2004.
[105] GERN F. Finite element based BWB centerbody structural optimization and weight prediction:AIAA-2012-1606[R]. Reston, VA:AIAA, 2012.
[106] GERN F H. Update on HCDstruct-a tool for hybrid wing body conceptual design and structural optimization:AIAA-2015-2544[R]. Reston, VA:AIAA, 2015.
[107] VELICKI A, THRASH P. Blended wing body structural concept development[J]. The Aeronautical Journal, 2010, 114(1158):513-519.
[108] HUIJTS C, VOSKUIJL M. The impact of control allocation on trim drag of blended wing body aircraft[J]. Aerospace Science and Technology, 2015, 46:72-81.
[109] WATERS S M, VOSKUIJL M, VELDHUIS L L M, et al. Control allocation performance for blended wing body aircraft and its impact on control surface design[J]. Aerospace Science and Technology, 2013, 29(1):18-27.
[110] GARMENDIA D C, CHAKRABORTY I, MAVRIS D N. Multidisciplinary approach to assessing actuation power of a hybrid wing-body[J]. Journal of Aircraft, 2016, 53(4):900-913.
[111] GARMENDIA D C, CHAKRABORTY I, MAVRIS D N. Method for evaluating electrically actuated hybrid wing-body control surface layouts[J]. Journal of Aircraft, 2015, 52(6):1780-1790.
[112] JENSEN S C, JENNEY G D, DAWSON D. Flight test experience with an electromechanical actuator on the F-18 systems research aircraft[C]//Digital Avionics Systems Conference, 2000.
[113] KULSHRESHTHA A, CHARRIER J. Electric actuation for flight and engine control:Evolution and challenges[C]//SAE-ACGSC Meeting, 2007.
[114] QIN N, VAVALLE A, LE MOIGNE A, et al. Aerodynamic considerations of blended wing body aircraft[J]. Progress in Aerospace Sciences, 2004, 40(6):321-343.
[115] 沈冬, 张彬乾, 陈迎春. 基于改进直接曲率法的一种气动反设计方法研究[J]. 西北工业大学学报, 2011, 29(4):529-535. SHEN D, ZHANG B Q, CHEN Y C. An improved direct iterative surface curvature (DISC) method for aerodynamic inverse design[J]. Journal of Northwestern Polytechnical University, 2011, 29(4):529-535(in Chinese).
[116] QIN N,VAVALLE A,LE MOIGNE A, et al. Aerodynamic studies of blended wing body aircraft:AIAA-2002-5448[R]. Reston, VA:AIAA, 2002.
[117] QIN N,VAVALLE A,LE MOIGNE A. Spanwise lift distribution for blended wing body aircraft[J]. Journal of Aircraft, 2005, 42(2):356-365.
[118] 林宇. 翼身融合布局亚音速飞机概念设计方法研究[D]. 西安:西北工业大学, 2011. LIN Y. Research on the conceptual design method of blended wing body layout subsonic aircraft[D]. Xi'an:Northwestern Polytechnical University, 2011(in Chinese).
[119] SARGEANT M A, HYNES T P, GRAHAM W R, et al. Stability of hybrid-wing-body-type aircraft with centerbody leading-edge carving[J]. Journal of Aircraft, 2010, 47(3):970-974.
[120] MIALON B, FOL T, BONNAUD C. Aerodynamic optimization of subsonic flying wing configurations:AIAA-2002-2931[R]. Reston, VA:AIAA, 2002.
[121] RAYMER D P. Aircraft design:A conceptual approach, AIAA education series[M]. Reston, VA:AIAA, 1989:84-92.
[122] RAHMAN N U. Propulsion and flight controls integration for the blended wing body aircraft[D]. Bedford:Cranfield University, 2009.
[123] HILEMAN J, REYNOLDS T, LAW T, et al. Development of approach procedures for silent aircraft:AIAA-2007-451[R]. Reston, VA:AIAA, 2007.
[124] PAULUS D, WIRTH C, HORNUNG M. Blended wing body aircraft-recommendations from high lift and control surface design and optimization:AIAA-2013-2908[R]. Reston, VA:AIAA, 2013.
[125] PAULUS D, BINDER S, PETERSSON Ö, et al. The integration of an efficient high lift system in the design process of a blended wing body aircraft:AIAA-2012-5650[R]. Reston, VA:AIAA, 2012.
[126] HARTWICH P M, DICKEY E D, SCLAFANI A J, et al. AFC-enabled simplified high-lift system integration study:NASA/CR-2014-218521[R]. Washington, D.C.:NASA Langley Research Center, 2014.
[127] WILD J. Mach and Reynolds number dependencies of the stall behavior of high-lift wing-sections[J]. Journal of Aircraft, 2013, 50(4):1202-1216.
[128] BURNSIDE N J, HORNE W C, ELMER K R, et al. Phased acoustic array measurements of a 5.75% hybrid wing body aircraft[J]. International Journal of Aeroacoustics, 2017, 16(4-5):326-357.
[129] BAHR C J, HUTCHESON F V, THOMAS R H, et al. A comparison of the noise characteristics of a conventional slat and krueger flap:AIAA-2016-2961[R], Reston, VA:AIAA, 2016.
[130] BURNAZZI M, RADESPIEL R. Design and analysis of a droop nose for coanda flap applications[J]. Journal of Aircraft, 2014, 51(5):1567-1579.
[131] KUMAR P, KHALID A. Blended wing body propulsion system design[J]. International Journal of Aviation, Aeronautics, and Aerospace, 2017, 4(4):1-43.
[132] SHEA P R, FLAMM J D, LONG K, et al. Turbine powered simulator calibration and testing for hybrid wing body powered airframe integration:AIAA-2016-0011[R]. Reston, VA:AIAA, 2016.
[133] FLAMM J D, JAMES K, BONET J T. Overview of ERA Integrated Technology Demonstration (ITD) 51A Ultra-High Bypass (UHB) integration for Hybrid Wing Body (HWB):AIAA-2016-0007[R]. Reston, VA:AIAA, 2016.
[134] CARTER M B, SHEA P R, FLAMM J D, et al. Experimental evaluation of inlet distortion on an ejector powered hybrid wing body at take-off and landing conditions:AIAA-2016-0010[R]. Reston, VA:AIAA, 2016.
[135] GANGOLI R A, SHARMA A, VAN D R. A CFD based parametric analysis of s-shaped inlet for a novel blended wing body aircraft[C]//International Conference on Advances in Thermal Systems, Materials and Design Engineering, 2017.
[136] LIOU M F, GRONSTAL D, KIM H J, et al. Aerodynamic design of the hybrid wing body with nacelle:n3-x propulsion-airframe configuration:AIAA-2016-3875[R]. Reston, VA:AIAA, 2016.
[137] HATHAWAY M D, DEL ROSARIO R, MADAVAN N. NASA fixed wing project propulsion research and technology development activities to reduce specific energy consumption:AIAA-2013-3605[R]. Reston, VA:AIAA, 2013.
[138] YANG Q, ZHENG Y, STREIT T. Aerodynamic design for wing-body blended and inlet[C]//ICAS, 2006.
[139] SMITH K N, O'BRIEN W F, LOWE K T. Analysis of duct vortex development with low and high-fidelity models to support StreamVaneTM design:AIAA-2018-1558[R]. Reston, VA:AIAA, 2018.
[140] HALL C A, CRICHTON D. Engine and installation configurations for a silent aircraft[J]. American Journal of Human Genetics, 2005, 58(6):1239-1246.
[141] HARDIN L W, COUSINS W T, WOLTER J D, et al. Data analysis techniques for fan performance in highly-distorted flows from boundary layer ingesting inlets:AIAA-2018-1888[R]. Reston, VA:AIAA, 2018.
[142] KIM H, LIOU M S. Shape design optimization of embedded engine inlets for N2B hybrid wing-body configuration[J]. Aerospace Science and Technology, 2013, 30(1):128-149.
[143] FLOREA R V, MATALANIS C, HARDIN L W, et al. Parametric analysis and design for embedded engine inlets[J]. Journal of Propulsion and Power, 2015, 31(3):843-850.
[144] KIM H, LIOU M S. Flow simulation and optimal shape design of N3-X hybrid wing body configuration using a body force method[J]. Aerospace Science and Technology, 2017, 71:661-674.
[145] HALL D K, GREITZER E M, TAN C S. Analysis of fan stage conceptual design attributes for boundary layer ingestion[J]. Journal of Turbomachinery, 2017, 139(7):071012.
[146] AKAYDIN H D, PANDYA S A. Implementation of a body force model in overflow for propulsor simulations:AIAA-2017-3572[R]. Reston, VA:AIAA, 2017.
[147] GOHARDANI A S, DOULGERIS G, SINGH R. Challenges of future aircraft propulsion:A review of distributed propulsion technology and its potential application for the all electric commercial aircraft[J]. Progress in Aerospace Sciences, 2011, 47(5):369-391.
[148] LEIFSSON L, KO A, MASON W H, et al. Multidisciplinary design optimization of blended-wing-body transport aircraft with distributed propulsion[J]. Aerospace Science and Technology, 2013, 25(1):16-28.
[149] YAN W F, WU J H, ZHANG Y L. Aerodynamic performance of blended wing body aircraft with distributed propulsion[C]//Advanced Materials Research, Trans Tech Publications, 2014, 1016:354-358.
[150] BLANCO R, HALL E C, CRICHTON D. Challenges in the silent aircraft engine design:AIAA-2007-0454[R]. Reston, VA:AIAA, 2007.
[151] KIM H, LIOU M F, LIOU M S. Mail-slot nacelle shape design for N3-X hybrid wing-body configuration:AIAA-2015-3805[R]. Reston, VA:AIAA, 2015.
[152] VAN Z D, NARK D, FERNANDEZ H. Propulsion noise reduction research in the NASA advanced air transport technology project:GRC-E-DAA-TN43850[R]. Cleveland, OH:NASA Glenn Research Center, 2017.
[153] KIM H, HARDING D, GRONSTAL D T, et al. Design of the hybrid wing body with nacelle:N3-X propulsion-airframe configuration:GRC-E-DAA-TN32200[R]. Cleveland, OH:NASA Glenn Research Center, 2016.
[154] 朱自强, 兰世隆. 民机机体噪声及其降噪研究[J]. 航空学报, 2015, 36(2):406-421. ZHU Z Q, LAN S L. Study of airframe noise and its reduction for commercial aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):406-421(in Chinese).
[155] GREENAIR. United States adopts ICAO Chapter 14 noise stringency standard for new aircraft designs[EB/OL]. (2017-10-18)[2019-04-10]. https://www.greenaironline.com/news.php?viewStory=2420.
[156] DIEDRICH A, HILEMAN J, TAN D, et al. Multidisciplinary design and optimization of the silent aircraft:AIAA-2006-1323[R]. Reston, VA:AIAA, 2006.
[157] GRAHAM W R, HALL C A, VERA MORALES M. The potential of future aircraft technology for noise and pollutant emissions reduction[J]. Transport Policy, 2014, 34:36-51.
[158] GUO Y P, THOMAS R H, BURLEY C L. On noise assessment for blended wing body aircraft:AIAA-2014-0365[R]. Reston, VA:AIAA, 2014.
[159] HALL C A, CRICHTON D. Engine design studies for a silent aircraft[J]. Journal of Turbomachinery, 2007, 129(3):479.
[160] HALL C A. Low noise engine design for the silent aircraft initiative[J]. Aeronautical Journal, 2009, 113(1147):599-607.
[161] MORRIS P J, MCLAUGHLIN D K, KUO C W. Noise reduction in supersonic jets by nozzle fluidic inserts[J]. Journal of Sound and Vibration, 2013, 332(17):3992-4003.
[162] POWERS R W, KUO C W, MCLAUGHLIN D K, et al. Supersonic jet noise reduction by nozzle fluidic inserts with simulated forward flight:AIAA-2014-2474[R]. Reston, VA:AIAA, 2014.
[163] SHAH P N, MOBED D D, SPAKOVSZKY Z S. Engine air-brakes for quiet air transport:AIAA-2013-1033[R]. Reston, VA:AIAA, 2013.
[164] QUAYLE A, DOWLING A, BABINSKY H, et al. Landing gear for a silent aircraft:AIAA-2007-0231[R]. Reston, VA:AIAA, 2007.
[165] SAKALIYSKI K, HILEMAN J, SPAKOVSZKY Z. Aero-acoustics of perforated drag plates for quiet transport aircraft:AIAA-2007-1032[R]. Reston, VA:AIAA, 2007.
[166] CRICHTON D, BLANCA E R, HILEMAN J L T. Design and operation for ultra low noise take-off:AIAA-2007-0456[R]. Reston, VA:AIAA, 2007.
[167] ANDREOU C, GRAHAM W, SHIN H C. Aeroacoustic comparison of airfoil leading edge high-lift geometries and supports:AIAA-2007-0230[R]. Reston, VA:AIAA, 2007.
[168] VICROY D D, DICKEY E D, PRINCEN N, et al. Overview of low-speed aerodynamic tests on a 5.75% scale blended-wing-body twin jet configuration:AIAA-2016-0009[R]. Reston, VA:AIAA, 2016.
[169] NGUYEN N, TING E, LEBOFSKY S. Aeroelastic analysis of a flexible wing wind tunnel model with variable camber continuous trailing edge flap design:ARC-E-DAA-TN20181[R]. Moffett Field, CA:NASA Ames Research Center, 2015.
[170] TURNER T L, MOORE J B, SU J. Elastomeric structural attachment concepts for aircraft flap noise reduction-challenges and approaches to hyperelastic structural modeling and analysis:NF1676L-16708[R]. Washington, D.C.:NASA Langley Research Center, 2014.
[171] HULTGREN L S. Core-noise research:NASA-20150010125[R]. Cleveland, OH:NASA Glenn Research Center, 2015.
[172] DOTY M J, BROOKS T F, BURLEY C L, et al. Jet noise shielding provided by a hybrid wing body aircraft:AIAA-2014-2625[R]. Reston, VA:AIAA, 2014.
[173] HUTCHESON F V, BROOKS T F, BURLEY C L, et al. Shielding of turbomachinery broadband noise from a hybrid wing body aircraft configuration:AIAA-2014-2624[R]. Reston, VA:AIAA, 2014.
[174] CZECH M J, THOMAS R H, ELKOBY R. Propulsion airframe aeroacoustic integration effects for a hybrid wing body aircraft configuration[J]. International Journal of Aeroacoustics 2012, 11(3-4):335-368.
[175] 陈大斌, 周家检, 郝璇, 等. 气动噪声风洞试验技术发展概述[J]. 实验流体力学, 2013, 27(1):106-112. CHEN D B, ZHOU J J, HAO X, et al. Review of aeroacoustic measurement techniques in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(1):106-112(in Chinese).
[176] PEREZ R E, LIU H T, BEHDINAN K. Relaxed static stability aircraft design via longitudinal control-configured multi-disciplinary design optimization methodology[J]. Canadian Aeronautics and Space Journal, 2006, 52(1):1-14.
[177] 张帅. 客机总体综合分析与优化及其在技术评估中的应用[D]. 南京:南京航空航天大学,2012. ZHANG S. Integrated analysis and optimization in conceptual design of airliners with applications to technology assessment[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2012(in Chinese).
Outlines

/