Electronics and Electrical Engineering and Control

3-D simulation of internal dielectric charging characteristics of spacecraft dielectric disc structure

  • YUAN Qingyun ,
  • WANG Song ,
  • HUANG Xinxin
Expand
  • 1. National Key Laboratory on Electromagnetic Environment Effects, Army Engineering University of PLA, Shijiazhuang 050003, China;
    2. Unit 63618, Kuerle 841000, China

Received date: 2019-03-29

  Revised date: 2019-04-17

  Online published: 2019-05-07

Supported by

National Natural Science Foundation of China (51577190); National Key Laboratory on Electromagnetic Environment Effects Foundation (614220501020117)

Abstract

For the Internal Dielectric Charging (IDC) of a particular spacecraft structure, in this paper, a 3-D IDC simulation is performed to a typical spacecraft complex dielectric structure——Solar Array Drive Mechanism (SADM) disc——considering the Geostationary Earth Orbit (GEO) with severe radiation environment (Flumic3). A charge transportation simulation is carried out by Geant4 and the electric field is numerically computed according to the charge conservation law. Based on those, the effects of shielding thickness on internal dielectric charging is studied, and a technique is proposed to improve the simulation efficiency by adjusting the lower energy limit of the incident electron spectrum according to the shielding thickness. The simulation results show that the most serious internal charging position occurs on the top edge of the contact face between the outermost upper layer dielectric of the disc structure and the metallic conducting ring. The increment of the shielding thickness could mitigate IDC. However, this mitigation effect is weaker as the temperature is falling. In the GEO with severe radiation environment (Flumic3), at temperature of 183 K, since the radiation-induced conductivity dominates the total conductivity, the dielectric conductivity will be cut down as the shielding thickness is increased. In this case, even using a 3 mm aluminum shielding, the peak electric field can reach the level of 107V/m.

Cite this article

YUAN Qingyun , WANG Song , HUANG Xinxin . 3-D simulation of internal dielectric charging characteristics of spacecraft dielectric disc structure[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(9) : 323035 -323035 . DOI: 10.7527/S1000-6893.2019.23035

References

[1] LAI S T, TAUTZ M. High-level spacecraft charging in eclipse at GEO-synchronous altitudes:A statistical study[J]. Journal of Geophysical Research, 2006, 111(A9):268-276.
[2] LAI S T. Some novel ideas of spacecraft charging mitigation[J]. IEEE Transactions on Plasma Science, 2012, 40(2):402-409.
[3] 史亮, 柳青, 陈益峰, 等. 太阳帆板驱动机构内带电效应试验[J]. 空间科学学报, 2017, 37(3):344-349. SHI L, LIU Q, CHEN Y F, et al. Experimental research on solar arry drive assembly internal charging effects[J]. Chinese Journal of Space Science, 2017, 37(3):344-349(in Chinese).
[4] GREEN N W, DENNISON J R. Deep dielectric charging of spacecraft polymers by energetic protons[J]. IEEE Transactions on Plasma Science, 2008, 36(5):2482-2490.
[5] 王建昭, 田岱, 张庆祥, 等. 木星环绕探测任务中的内带电风险评估[J]. 深空探测学报, 2017, 4(6):564-570. WANG J Z, TIAN D, ZHANG Q X, et al. Internal charging evaluation in Jupiter exploration mission[J]. Journal of Deep Space Exploration, 2017, 4(6):564-570(in Chinese).
[6] HAN J, HUANG J, LIU Z, et al. Correlation of double star anomalies with space environment[J]. Journal of Spacecraft Rockets, 2005, 42(6):1061-1065.
[7] FREDERICKSON A R, DENNISON J R. Measurement of conductivity and charge storage in insulators related to spacecraft charging[J]. IEEE Transactions on Nuclear Science, 2003, 50(6):2284-2291.
[8] THIÉBAULT B, JEANTY-RUARD B, SOUQUET P, et al. SPIS 5.1:An innovative approach for spacecraft plasma modeling[J]. IEEE Transactions on Plasma Science, 2015, 43(9):2782-2788.
[9] MANDELL M J, DAVIS V A, COOKE D L, et al. Nascap-2k spacecraft charging code overview[J]. IEEE Transactions on Plasma Science, 2006, 34(5):2084-2093.
[10] MURANAKA T, HOSODA S, KIM J H, et al. Development of multi-utility spacecraft charging analysis tool (MUSCAT)[J]. IEEE Transactions on Plasma Science, 2008, 36(5):2336-2349.
[11] HATTA S, MURANAKA T, KIM J, et al. Accomplishment of multi-utility spacecraft charging analysis tool (MUSCAT) and its future evolution[J]. Acta Astronautica, 2009, 64(5):495-500.
[12] JUN I, GARRETT H B, KIM W, et al. Review of an internal charging code, NUMIT[J]. IEEE Transactions on Plasma Science, 2008, 36(5):2467-2472.
[13] RODGERS D J, RYDEN K A, WRERM G L. Fitting of material parameters for DICTAT internal dielectric charging simulations using DICFIT[J]. Materials in a Space Environment, 2003, 540(1):609-613.
[14] 黄建国, 陈东. 卫星介质深层充电的计算机模拟研究[J]. 地球物理学报, 2004, 47(3):392-397. HUAN J G, CHEN D. A study of deep dielectric charging on satellites by computer simulation[J]. Chinese Journal of Geo-physics, 2004, 47(3):392-397(in Chinese).
[15] 黄建国, 陈东. 卫星中介质深层充电特征研究[J]. 物理学报, 2004, 53(3):961-966. HUAN J G, CHEN D. A study of characteristics for deep dielectric charging on satellites[J]. Acta Physidca Sinica, 2004, 53(3):961-966(in Chinese).
[16] KATZ I, PARKS D E, MANDELL M J, et al. A three dimensional dynamic study of electrostatic charging in materials:NASA CR-135256[R]. Cleveland, OH:NASA Lewis Research Center, 1977.
[17] 张振龙, 全荣辉, 韩建伟, 等. 卫星部件内部充放电试验与仿真[J]. 原子能科学技术, 2010, 44(S1):538-544. ZHANG Z L, QUAN R H, HAN J W, et al. Internal charging-discharging test and simulaiton for satellite components[J]. Atomic Energy Science and Technology, 2010, 44(S1):538-544(in Chinese).
[18] 王松, 唐小金, 易忠, 等. 非规则边界条件对介质内带电的影响研究[J]. 原子能科学技术, 2016, 50(9):1537-1543. WANG S, TANG X J, YI Z, et al. Study on impact of irregular boundary condition on dielectric internal charging[J]. Atomic Energy Science and Technology, 2016, 50(9):1537-1543(in Chinese).
[19] 王建昭, 陈鸿飞, 蔡振波, 等. 电阻接地状态下星用电路板深层充电仿真方法[J]. 航天器环境工程, 2017, 34(3):258-264. WANG J Z, CHEN H F, CAI Z B, et al. A mothod simulation internal charging of spacecraft circuit board grounded by electric resistance[J]. Spacecraft Environment Engineering, 2017, 34(3):258-264(in Chinese).
[20] 王松. 航天器内带电三维仿真与外露介质充电研究[D]. 石家庄:军械工程学院, 2016:7. WANG S. Research on 3D simulation of spacecraft internal charging and exposed dielectric charging[D]. Shijiazhuang:Ordnance Engineering College, 2016:7(in Chinese).
[21] 高炳荣, 郝永强, 焦维新. 用蒙特卡罗方法研究卫星内部带电问题[J]. 空间科学学报, 2004, 24(4):289-294. GAO B R, HAO Y Q, JIAO W X. A study on spacecraft internal charging with Monte Carlo method[J]. Chinese Journal of Space Science, 2004, 24(4):289-294(in Chinese).
[22] 易忠, 王松, 唐小金, 等. 不同温度下复杂介质结构内带电充电规律仿真分析[J]. 物理学报, 2015, 64(12):125201. YI Z, WANG S, TANG X J, et al. Computer simulation on temperature-dependent internal charging of complex dielectric structure[J]. Acta Physidca Sinica, 2015,64(12):125201(in Chinese).
[23] 苏京, 张丽新, 刘刚, 等. 转移轨道航天器深层充放电效应仿真分析[J]. 上海航天, 2018, 35(3):74-80. SU J, ZHANG L X, LIU G, et al. Simulation of deep dielectric charging for transfer orbit satellite[J]. Aerospace Shanghai, 2018, 35(3):74-80(in Chinese).
[24] 王松, 武占成, 唐小金, 等.卫星外露电缆束介质结构深层充电仿真分析[J]. 航天器环境工程, 2015, 32(3):268-272. WANG S, WU Z C, TANG X J, et al. Simulation of deep dielectric charging on satellite's exposed electric cable bundle[J]. Spacecraft Environment Engineering, 2015, 32(3):268-272(in Chinese).
[25] 王松, 易忠, 唐小金, 等. 考虑温度梯度的卫星外露介质深层充电[J]. 高电压技术, 2015, 42(5):1429-1435. WANG S, YI Z, TANG X J, et al. Deep dielectric charging of exposed dielectric of satellite considering temperature gradient[J]. High Voltage Engineering, 2015, 42(5):1429-1435(in Chinese).
[26] SHU T L. 航天器带电原理[M]. 李盛涛, 郑晓泉, 陈玉,等,译. 北京:科学出版社,2015:161. SHU T L. Fundamentals of spacecraft charging[M]. LI S T, ZHENG X Q, CHEN Y, et al, translated. Beijing:Science Press, 2015:161(in Chinese).
[27] 王松, 武占成, 唐小金, 等. 聚酰亚胺电导率随温度和电场强度的变化规律[J]. 物理学报, 2016, 65(2):025201. WANG S, WU Z C, TANG X J, et al. Study on temperature and electric field dependence of conductivity in polyimide[J]. Acta Physidca Sinica, 2016, 65(2):025201(in Chinese).
[28] ADAMEC V, CALDERWOOD J H. Electrical conduction in dielectrics at high fields[J]. Journal of Physics D:Applied Physics, 1975, 8(5):551-560.
[29] 李盛涛, 李国倡, 闵道敏, 等. 入射电子能量对低密度聚乙烯深层充电特性的影响[J]. 物理学报, 2013, 62(5):0059401. LI S T, LI G C, MIN D M, et al. Influence of radiation electron energy on deep dielectric charging characteristics of low density polyethylene[J]. Acta Physidca Sinica, 2013, 62(5):0059401(in Chinese).
[30] PASSENHEIM B C, VAN-LINT V A J, RIDDELL J D, et al. Electrical conductivity and discharge in spacecraft thermal control dielectrics[J]. IEEE Transactions on Nuclear Science,1982, 29(6):1594-1600.
[31] 蒙志成. 环境温度对航天器介质材料带电特性的影响研究[D]. 石家庄:军械工程学院, 2016:1. MENG Z C. Study on the influence of ambient temperature on the charge characteristics of spacecraft dielectric materials[D]. Shijiazhuang:Ordnance Engineering College, 2016:1(in Chinese).
Outlines

/