Electronics and Electrical Engineering and Control

Target existence probability based multi-radar track-to-track fusion algorithm

  • ZHANG Tianyu ,
  • ZHENG Jian ,
  • TIAN Zhuoer ,
  • RONG Yingjiao ,
  • GUO Yunfei ,
  • SHENTU Han
Expand
  • 1. School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China;
    2. No. 28 Institute of CETC, Nanjing 210014, China;
    3. College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China;
    4. Science and Technology on Near-surface Detection Laboratory, Wuxi 214035, China

Received date: 2018-12-12

  Revised date: 2019-02-09

  Online published: 2019-04-28

Supported by

National Natural Science Foundation of China (61871166; 61703128);Foundation of Science and Technology on Near-surface Detection Laboratory (614241404030717)

Abstract

When multi-radar track-to-track fusion is in clutter, the cross-covariance of errors of local estimates is unavailable. A target existence probability based track-to-track fusion method is proposed to improve the tracking accuracy. First, based on the integrated probability data association, we can estimate the set of target track estimation and the corresponding probability of the target existence of a single receiver. Then, when the cross-covariance of errors of local estimates is unavailable, based on the PTE information, we propose a generalized convex combination track-to-track fusion algorithm that is without memory. Furthermore, we give feedback to the fusion state of the previous frame, proposing an integrated generalized convex combination track-to-track fusion algorithm with memory. Simulation results demonstrated the effectiveness of the proposed method.

Cite this article

ZHANG Tianyu , ZHENG Jian , TIAN Zhuoer , RONG Yingjiao , GUO Yunfei , SHENTU Han . Target existence probability based multi-radar track-to-track fusion algorithm[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(8) : 322848 -322848 . DOI: 10.7527/S1000-6893.2019.22848

References

[1] ADRIAN R. A. Sensor management[C]//Avionics Systems Conference. Piscataway, NJ:IEEE Press, 1993:32-37.
[2] INGGS M. Passive coherent location as cognitive radar[J]. IEEE Aerospace and Electronic Systems Magazine, 2010,25(5):12-17.
[3] GUO Y F, THARMARASA R, KIRUBARAJAN T, et al. Passive coherent location with unknown transmitter states[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(1):148-168.
[4] GOGINENI S, RANGASWAMY M, RIGLING B D, et al. Cramer-Rao bounds for UMTS-based passive multistatic radar[J]. IEEE Transactions on Signal Processing, 2013, 62(1):95-106.
[5] CHOI S, CROUSE D, WILLETT P, et al. Multistatic target tracking for passive radar in a DAB/DVB network:Initiation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3):2460-2469.
[6] 郭云飞, 张沛男,才智. 基于DP-SA的机载外辐射源无源协同定位[J]. 航空学报, 2018, 39(7):321835. GUO Y F, ZHANG P N, CAI Z. DP-SA based airborne passive coherent location[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7):321835(in Chinese).
[7] 万显荣, 梁龙,但阳鹏,等. 移动平台外辐射源雷达实验研究[J]. 电波科学学报, 2015, 30(2):383-390. WAN X R, LIANG L, DAN Y P, et al. Experimental research of passive radar on moving platform[J]. Chinese Journal of Radio Science, 2015, 30(2):383-390(in Chinese).
[8] 潘泉. 多源信息融合理论及应用[M]. 北京:清华大学出版社, 2013:1-10. PAN Q. Multi-source information fusion[M]. Beijing:Tsinghua University Press, 2013:1-10(in Chinese).
[9] O'NEIL S D, PAO L Y. Multisensor fusion algorithms for tracking[C]//American Control Conference. Piscataway, NJ:IEEE Press, 1993:859-863.
[10] CHEN H, KIRUBARAJAN T, BAR-SHALOM Y. Performance limits of track-to-track fusion versus centralized estimation:Theory and application[sensor fusion] [J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(2):386-400.
[11] BAR-SHALOM Y, CAMPO L. The effects of the common process noise on the two-sensor fused-track-covariance[J]. IEEE Transactions on Aerospace and Electronic Systems. 1986, 22(3):803-805.
[12] 杨春玲, 刘国岁. 非线性系统中多传感器目标跟踪融合算法研究[J]. 航空学报, 2000, 21(6):512-515. YANG C L, LIU G S. Research on fusion algorithm for multisensory target tracking nonlinear systems[J].Acta Aeronautica et Astronautica Sinica, 2000, 21(6):512-515(in Chinese).
[13] TIAN X, YUAN T, BAR-SHALOM Y. Track-to-track fusion in linear and nonlinear systems[D]. Storrs, CT:University of Connecticut, 2015:21-41.
[14] WANG Y, LI X R. Distributed estimation fusion with unavailable cross-correlation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1):259-278.
[15] AJGL J, STRAKA O. Covariance intersection in track-to-track fusion without memory[C]//International Conference on Information Fusion. Piscataway, NJ:IEEE Press, 2016:1027-1033.
[16] AJGL J, STRAKA O. Covariance intersection in track-to-track fusion with memory[C]//International Conference on Multisensor Fusion and Integration for Intelligent Systems. Piscataway, NJ:IEEE Press, 2016:359-364.
[17] MUSICKID, SONG T L, LEE E H. Track-to-track fusion with target existence[J]. IET Radar Sonar Navigation, 2015, 9(3):241-248.
[18] LEEE H, MUSICKI D, SONG T L. Multi-sensor distributed fusion based on integrated probabilistic data association[C]//International Conference on Information Fusion. Piscataway, NJ:IEEE Press, 2014:1-7.
[19] 刘昇, 卢广山,张晓鸿. 密集杂波环境下逻辑起始算法研究[J]. 电光与控制, 2012, 19(1):34-37. LIU S, LU G S, ZHANG X H. Logic algorithm for track initiation under intensive clutters[J]. Electronics Optics and Control, 2012, 19(1):34-37(in Chinese).
[20] MUSICKI D, EVANS R, STANKOVIC S. Integrated probabilistic data association (IPDA)[C]//Proceedings of the 31st IEEE Conference on Decision and Control. Piscataway, NJ:IEEE Press, 1992:3796-3798.
[21] LEEE H, SONG T L. Multi-sensor track-to-track fusion with target existence in cluttered environments[J]. IET Radar Sonar & Navigation, 2017, 11(7):1108-1115.
Outlines

/