Fluid Mechanics and Flight Mechanics

Impact of simulation of electrical conductivity on hypersonic MHD control

  • DING Mingsong ,
  • JIANG Tao ,
  • LIU Qingzong ,
  • DONG Weizhong ,
  • GAO Tiesuo ,
  • FU Yang'aoxiao
Expand
  • Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2019-03-18

  Revised date: 2019-04-08

  Online published: 2019-04-17

Abstract

Electrical conductivity of high temperature air is one of the most import parameters in numerical studies of hypersonic flow Magneto-Hydro-Dynamic(MHD) control. Considering the thermochemical non-equilibrium effect in the hypersonic flow, a numerical simulation of MHD method using 3D low magnetic Reynolds number and the corresponding computational codes is carried out, addressing the accuracy of the electrical conductivity simulation and its impact on hypersonic flow MHD control. Based on several common computational approaches to electrical conductivity, the numerical simulation analyzes the impact of simulation of electrical conductivity on the hypersonic flow MHD control. The results show that the relationship between the descent degree of heat flux by using MHD control and electrical conductivity is nonlinear. The thermal saturation phenomenon of electrical conductivity in MHD control exists at high electrical conductivity, and its mechanism may be related to chemical equilibrium state.Using the given electrical conductivity condition will magnify the magneto-resistance effect, overestimating the predicted drag coefficient. Electrical conductivities calculated by different conductivity models can be quite different, even not of the same order, thus can have a great influence on the control effect of hypersonic MHD flow. This is relevant to the application scope of conductivity model and select principle of parameter. For the high temperature hypersonic flow that contains multiple dissociated and ionized components, using electrical conductivity model, identified as M8 in this paper, which is based on multiple ionized components, can produced best consistency between the computational results and the experimental results.

Cite this article

DING Mingsong , JIANG Tao , LIU Qingzong , DONG Weizhong , GAO Tiesuo , FU Yang'aoxiao . Impact of simulation of electrical conductivity on hypersonic MHD control[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(11) : 123009 -123009 . DOI: 10.7527/S1000-6893.2019.23009

References

[1] 乐嘉陵. 再入物理[M]. 北京:国防工业出版社, 2005:9-21. LE J L. Reentry physics[M]. Beijing:National Defence Industry Press, 2005:9-21(in Chinese).
[2] 董维中. 热化学非平衡效应对高超声速流动影响的数值计算与分析[D]. 北京:北京航空航天大学, 1996. DONG W Z. Numerical simulation and analysis of thermo-chemical non-equilibrium effects at hypersonic flows[D]. Beijing:Beihang University, 1996(in Chinese).
[3] 潘勇. 高超声速流场磁场干扰效应数值模拟方法研究[D] 南京:南京航空航天大学, 2007. PAN Y. Numerical methods for hypersonic flowfield with magnetic interference[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2007(in Chinese).
[4] MACCORMACK R W. Evaluation of the low magnetic reynolds approximation for aerodynamic flow calculations:AIAA-2005-4780[R]. Reston, VA:AIAA, 2005.
[5] 田正雨. 高超声速流动的磁流体力学控制数值模拟研究[D]. 长沙:国防科学技术大学, 2008. TIAN Z Y. Numerical investigation for hypersonic flow control by magnetohydrodynamics methods[D]. Changsha:National University of Defense and Technology, 2008(in Chinese).
[6] HIROTAKA O, TAKASHI A. Influence of the hall effect on the electrodynamic heat shield system for reentry vehicles:AIAA-2005-5049[R]. Reston, VA:AIAA, 2005.
[7] STEFAN S, UWE R. Transport coefficients of reacting air at high temperatures:AIAA-2000-0211[R]. Reston, VA:AIAA, 2000.
[8] TAKAHASHI T, SHIMOSAWA Y. Numerical study of thermal protection using magnetohydrodynamic flow control in mars entry flight:AIAA-2015-3365[R]. Reston, VA:AIAA, 2015.
[9] FUJINO T, ISHIKAWA M. Numerical simulation of MHD flow control along super orbital reentry trajectory:AIAA-2013-3000[R]. Reston, VA:AIAA, 2013.
[10] 李开, 柳军, 刘伟强. 高超声速飞行器磁控热防护霍尔电场数值方法研究[J]. 物理学报, 2017, 66(8):084702. LI K, LIU J, LIU W Q. Numerical solution procedure for Hall electric field of the hypersonic magnetohydrodynamic heat shield system[J]. Acta Physica Sinica, 2017, 66(8):084702(in Chinese).
[11] GNOFFO P A, GUPTA R N, SHINN J L. Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium:NASA TP-2867[R]. Washington, D.C.:NASA, 1989.
[12] MATSUZAKI R. Quasi-one-dimensional aerodynamics with chemical,vibrational and thermo nonequilibrium[J]. Transcations of the Japan Society for Aeronautical and Space Science,1988, 90(30):243-258.
[13] MACHERET S O, SHNEIDER M N. Modeling of MHD power generation on board reentry vehicles:AIAA-2004-1024[R]. Reston, VA:AIAA, 2004.
[14] BISEK N J, BOYD I D. Numerical study of electromagnetic aerodynamic control of hypersonic vehicles:AIAA-2009-1000[R]. Reston, VA:AIAA, 2009.
[15] BISEK N J, BOYD I D. Numerical study of magnetoaerodynamic flow around a hemisphere[J]. Journal of Spacecraft and Rockets, 2010, 47(5):816-827.
[16] CRISTOFOLINI A, BORGHI C A. Numerical rebuilding of MHD tests in an unseeded Mach 10 air flow around a blunt body:AIAA-2012-2733[R]. Reston, VA:AIAA, 2012.
[17] 赫新, 陈坚强, 邓小刚. NND格式在多维理想磁流体方程组中的应用[J]. 空气动力学学报, 2005, 23(3):267-273. HE X, CHEN J Q, DENG X G. NND scheme's application in multi-dimensional ideal magnetohydrodynamic equations[J]. Acta Aerodynamica Sinica, 2005, 23(3):267-273(in Chinese).
[18] 陈刚,张劲柏, 李椿萱. 磁流体流动控制中的磁场配置效率研究[J]. 力学学报, 2008, 40(6):752-759. CHEN G, ZHANG J B, LI C X. Efficiency analysis of magnetic field configuration in MHD flow control[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(6):752-759(in Chinese).
[19] 黄富来,黄护林. 磁场对高超声速弱电离气体流动的影响[J]. 航空学报, 2009, 30(10):1834-1839. HUANG F L,HUANG H L. Effect of magnetic field on hypersonic weakly ionized gas flow[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10):1834-1839(in Chinese).
[20] 黄浩,黄护林,张喜东, 等. 基于电子束电离的高超声速磁流体发电机[J]. 推进技术, 2013, 34(5):706-712. HUANG H, HUANG H L, ZHANG X D, et al. Hypersonic magnetohydrodynamic generator based on electron-beam-generated ionization[J]. Journal of Propulsion Technology, 2013, 34(5):706-712(in Chinese).
[21] 何淼生, 杨文将, 郑小梅, 等. 基于磁流体控制的高超声速进气道黏性效应[J]. 航空动力学报, 2013, 28(2):365-371. HE M S, YANG W J, ZHENG X M, et al. Viscosity effect of hypersonic inlet based on magnetohydrodynamic control[J]. Journal of Aerospace Power, 2013, 28(2):365-371(in Chinese).
[22] 李开, 刘伟强. 高超声速飞行器磁控热防护系统建模分析[J]. 物理学报, 2016, 65(6):064701 LI K, LIU W Q. Analysis of the magnetohydrodynamic heat shield system for hypersonic vehicles[J]. Acta Physica Sinica, 2016, 65(6):064701(in Chinese).
[23] 李开, 柳军, 刘伟强. 高超声速飞行器磁控热防护霍尔电场数值方法研究[J]. 物理学报, 2017, 66(8):084702. LI K, LIU J, LIU W Q. Numerical solution procedure for Hall electric field of the hypersonic magnetohydrodynamic heat shield system[J]. Acta Physica Sinica, 2017, 66(8):084702(in Chinese).
[24] 姚霄, 刘伟强, 谭建国. 高速飞行器磁控阻力特性[J]. 物理学报, 2018, 67(17):174702. YAO X, LIU W Q, TAN J G. Analysis of the magnetohydrodynamic heat shield system for hypersonic vehicles[J]. Acta Physica Sinica, 2018, 67(17):174702(in Chinese).
[25] 高铁锁, 董维中,丁明松,等. 物理化学模型对高温流场等离子体分布的影响[J]. 空气动力学学报, 2013, 31(5):541-545. GAO T S, DONG W Z, DING M S, et al. The effects of physicochemical models on distribution of plasma in high-temperature flowfield[J]. Acta Aerodynamica Sinica, 2013, 31(5):541-545(in Chinese).
[26] 高铁锁, 董维中, 江涛,等. 化学模型对数值模拟等离子体流动的影响研究[J]. 宇航学报, 2016, 37(10):1193-1199. GAO T S, DONG W Z, JIANG T, et al. Research on effects of chemical models on numerical simulation of plasma flow[J]. Journal of Astronautics, 2016, 37(10):1193-1199(in Chinese).
[27] 丁明松, 江涛, 董维中,等. 三维等离子体MHD气动热环境数值模拟[J]. 航空学报, 2017, 38(8):121030. DING M S, JIANG T, DONG W Z, et al. Numerical simulation of 3D plasma MHD aero-thermal environment[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(8):121030(in Chinese).
[28] PARK C. Review of chemical-kinetic problems of future NASA missions, I:Earth entries[J]. Journal of Thermophysics and Heat Transfer,1993, 7(3):385-398.
[29] OTSU H, MATSUSHITA K, DETLEV K. Reentry heating mitigation by utilizing the hall effect:AIAA-2004-2167[R]. Reston, VA:AIAA, 2004.
[30] NAGATA Y, OTSU H, YAMADA K. Influence of hall effect on electrodynamic flow control for weakly ionized flow:AIAA-2012-2734[R]. Reston, VA:AIAA, 2012.
[31] 丁明松,董维中,高铁锁,等.局部催化特性差异对气动热环境影响的计算分析[J]. 航空学报, 2018, 39(3):121588. DING M S, DONG W Z, GAO T S, et al. Computational analysis of influence of differences in local catalytic properties on aero-thermal environment[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(3):121588(in Chinese).
[32] CANDLER G V, MACCORMARK R W. The computation of hypersonic ionized flows in chemical and thermal nonequilibium:AIAA-1988-0051[R]. Reston, VA:AIAA, 1988.
[33] SELLE S, RIEDEL U. Transport coefficients of reacting air at high temperatures:AIAA-2000-0211[R]. Reston, VA:AIAA, 2000.
Outlines

/