Review

Review of key technologies for station-keeping of stratospheric aerostats based on wind field utilization

  • DENG Xiaolong ,
  • YANG Xixiang ,
  • MA Zhenyu ,
  • ZHU Bingjie ,
  • HOU Zhongxi
Expand
  • College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China

Received date: 2019-01-25

  Revised date: 2019-02-18

  Online published: 2019-04-11

Supported by

National Natural Science Foundation of China (51605484);Natural Science Foundation of Hunan Province(2017JJ3356, 2018JJ3587);Scientific Research Project of National University of Defense Technology (ZK18-03-54)

Abstract

The novel stratospheric aerostats based on wind filed utilization inherit the merits of high altitude balloons, such as simple structure, mature technology, and low cost. Meanwhile, the control limitations of balloons on trajectory and altitude control could be overcome by introducing a control design. With certain capability on flight trajectory planning and station-keeping, the aerostats have been considered as an important vehicle for near-space application. This paper first reviews the research situations of typical projects, sorting out the key technologies for the development of novel stratospheric aerostats. Then, we focus on the key issues such as stratospheric wind model method, altitude control method, and station-keeping strategies, discussing the feasible solutions for the related problems from the perspective of engineering.

Cite this article

DENG Xiaolong , YANG Xixiang , MA Zhenyu , ZHU Bingjie , HOU Zhongxi . Review of key technologies for station-keeping of stratospheric aerostats based on wind field utilization[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(8) : 22941 -022941 . DOI: 10.7527/S1000-6893.2019.22941

References

[1] PANKINE A, LI Z, PARSONS D, et al. Stratospheric satellites for earth observations[J]. Bulletin of the American Meteorological Society, 2009, 90(8):1109-1119.
[2] LU L, SONG H, WANG Y, et al. Deformation behavior of non-rigid airships in wind tunnel tests[J]. Chinese Journal of Aeronautics, 2019, 32(3):611-618.
[3] 张永栋, 翟嘉琪,孟小君,等. 基于行为逻辑的平流层飞艇试验自动测试方法[J]. 航空学报, 2018, 39(9):322185. ZHANG Y D, ZHAI J Q, MENG X J, et al. Approach for automatic testing of stratospheric airship test based on behavior logic[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(9):322185(in Chinese).
[4] ANDROULAKAKIS S, JUDY R. Status and plans of high altitude airship (HAATM) program[C]//AIAA Lighter-Than-Air Systems Technology (LTA) Conference. Reston,VA:AIAA, 2013.
[5] 郑黎明, 杏建军,陈子昂,等. Dryden型大气紊流对平流层飞艇能量最优轨迹影响[J]. 航空学报, 2017, 38(1):113-127. ZHENG L M, XING J J, CHEN Z A, et al. Effect of Dryden atmospheric turbulence on minimum-energy trajectory of stratospheric airships[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1):113-127(in Chinese).
[6] 黄宛宁, 栗颖思,周书宇,等. 现代浮空器军事应用[J]. 科技导报, 2017, 35(15):20-27. HUANG W N, LI Y S, ZHOU S Y. Military applications of modern lighter-than-air vehicles[J]. Science and Technology Review, 2017, 35(15):20-27(in Chinese).
[7] SMITH J. The NASA balloon program:Looking to the future[J]. Advances in Space Research, 2004, 33(10):1588-1593.
[8] CATHEY H. Development overview of the revised NASA ultra long duration balloon[J]. Advances in Space Research, 2008, 42(10):1624-1632.
[9] CATHEY H, FAIRBROTHER D, SAID M. Performance highlights of NASA super pressure balloon mid-latitude flights[C]//AIAA Balloon Systems Conference. Reston,VA:AIAA, 2017.
[10] 谭惠丰, 王超,王长国. 实现结构轻量化的新型平流层飞艇研究进展[J]. 航空学报,2010, 31(2):257-264. TAN H F, WANG C, WANG C G. Progress of new type stratospheric airships for realization of lightweight[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(2):257-264(in Chinese).
[11] SMITH M, RAINWATER E. Optimum designs for superpressure balloons[J]. Advances in Space Research, 2004, 33(10):1688-1693.
[12] 史智广, 张小强,李锦清,等. 平流层浮空器保压指标对驻空性能的影响[J]. 航空学报, 2016, 37(6):1833-1840. SHI Z G, ZHANG X Q, LI J Q, et al. Effect of ground pressure-maintenance index on stagnation performance of stratospheric aerostats[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(6):1833-1840(in Chinese).
[13] PAGITZ M. The future of scientific ballooning[J]. Philosophical Transactions of the Royal Society A, 2007, 365(3):3003-3017.
[14] NISHIMURA J. Scientific ballooning in the 20th century:A historical perspective[J]. Advances in Space Research, 2002, 30(5):1071-1085.
[15] YAJIMA N, IZUTSU N, IMAMURA T, et al. Scientific ballooning:Technology and applications of exploration balloons floating in the stratosphere and the atmospheres of other planets[M]. New York:Springer, 2009:195-201.
[16] SOBESTER A, CZERSKI H, ZAPPONI N, et al. High-altitude gas balloon trajectory prediction:A Monte Carlo model[J]. AIAA Journal, 2014, 52(4):832-842.
[17] ZHANG Y, LIU D. Influences of initial launch conditions on flight performance of high altitude balloon ascending process[J]. Advances in Space Research, 2015, 56(4):605-618.
[18] LEE Y, YEE K. Numerical prediction of scientific balloon trajectories while considering various uncertainties[J]. Journal of Aircraft, 2016, 54(2):768-782.
[19] GUO X, ZHU M. Ascent trajectory optimization for stratospheric airship with thermal effects[J]. Advances in Space Research, 2013, 52(6):1097-1110.
[20] YANG Y, WU J, ZHENG W. Station-keeping control for a stratospheric airship platform via fuzzy adaptive back stepping approach[J]. Advances in Space Research, 2013, 51(7):1157-1167.
[21] 郭建国, 周军. 临近空间低动态飞行器控制研究综述[J].航空学报, 2014, 35(2):320-331. GUO J G, ZHOU J. Review of the control of low dynamic vehicles in near space[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):320-331(in Chinese).
[22] ZHU M, YIN S, LIANG H, et al. Near space airship conceptual design and optimization[J]. Journal of Communications and Information Networks, 2016, 1(1):125-133.
[23] 杨燕初, 王生,顾逸东,等. 基于遗传算法的临近空间飞艇多学科优化设计[J]. 计算机仿真, 2012, 29(4):49-54. YANG Y C, WANG S, GU Y D, et al. Multidisciplinary design optimization of near space airship based on genetic algorithm[J]. Computer Simulation, 2012, 29(4):49-54(in Chinese).
[24] 赵达, 刘东旭,孙康文,等.平流层飞艇研制现状、技术难点及发展趋势[J]. 航空学报, 2016, 37(1):45-56. ZHAO D, LIU D X, SUN K W, et al. Research status, technical difficulties and development trend of stratospheric airship[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):45-56(in Chinese).
[25] MENG J, LIU S, YAO Z, et al. Optimization design of a thermal protection structure for the solar array of stratospheric airships[J]. Renewable Energy, 2019, 133:593-605.
[26] 麻震宇, 侯中喜,杨希祥. 临近空间大型柔性充气囊体结构特性分析[J]. 国防科技大学学报, 2015, 37(4):25-30. MA Z Y, HOU Z X, YANG X X. Structural performance analysis of large-scale flexible inflatable structures for stratospheric airships[J]. Journal of National University of Defense Technology, 2015, 37(4):25-30(in Chinese).
[27] 肖存英, 胡雄,龚建村,等. 中国上空平流层准零风层的特征分析[J]. 空间科学学报, 2008, 28(3):230-235. XIAO C Y, HU X, GONG J C, et al. Analysis of the characteristics of the stratospheric quasi-zero wind layer over China[J]. Chinese Journal of Space Science, 2008, 28(3):230-235(in Chinese).
[28] RONEY J. Statistical wind analysis for near-space applications[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2007, 69(13):1485-1501.
[29] YANG X, LIU D. Renewable power system simulation and endurance analysis for stratospheric airships[J]. Renewable Energy, 2017, 113:1070-1076.
[30] 李魁. 基于风场环境利用的浮空器轨迹控制研究[D]. 长沙:国防科技大学,2018:30-44. LI K. Research on trajectory control of lighter than air vehicles using wind environment[D]. Changsha:National University of Defense Technology, 2018:30-44(in Chinese).
[31] 陈柏青, 刘毅,刘靓珂,等. 低纬地区平流层准零风层时空分布特征分析[J]. 气候与环境研究, 2018, 23(6):657-669. CHEN B Q, LIU Y, LIU L K, et al. Characteristics of spatial-temporal distribution of the stratospheric quasi-zero wind layer in low-latitude regions[J]. Climatic and Environmental Research, 2018, 23(6):657-669(in Chinese).
[32] KATIKALA S. Google project loon[J]. InSight:Rivier Academic Journal, 2014, 10(2):1-6.
[33] ANDURKAR A, PRACHIZODPE M. A review paper on project "LOONS"[J]. International Journal of Advanced Research in Computer and Communication Engineering, 2016, 5(3):132-138.
[34] 李春霖, 罗蓉媛,陈彤曦. 平流层通信新思路——谷歌气球计划[J]. 通信技术, 2015, 48(2):125-129. LI C L, LUO R Y, CHEN T X. New idea for stratospheric communications-Google loon[J]. Communications Technology, 2015, 48(2):125-129(in Chinese).
[35] ATHAR R, MATTEWS T, LAVIGNE J. Stratospheric C4ISR unmanned station(STRATACUS)[C]//AIAA Balloon Systems Conference, Reston,VA:AIAA, 2017.
[36] 张小雯, 郑永光,吴蕾,等. 风廓线雷达资料在天气业务中的应用现状与展望[J]. 气象科技, 2017, 45(2):285-297. ZHANG X W, ZHENG Y G, WU L, et al. Review on application of wind profiler radar in weather monitoring and forecasting[J]. Meteorological Science and Technology, 2017, 45(2):285-297(in Chinese).
[37] 田晓敏, 刘东,徐继伟,等. 大气探测激光雷达技术综述[J]. 大气与环境光学学报, 2018, 5:321-341. TIAN X M, LIU D, XU J W, et al. Review of lidar technology for atmosphere monitoring[J]. Journal of Atmospheric and Environmental Optics, 2018, 5:321-341(in Chinese).
[38] 郭启云, 杨荣康,钱媛,等. 气球携带探空仪上升和降落伞携带探空仪下降的全程探空对比分析[J]. 气象, 2018, 44(8):1094-1103. GUO Q Y, YANG R K, QIAN Y, et al. Full-range sounding comparison analysis of balloon borne rdiosonde rising and parachute carrying radiosonde descending[J]. Meteorological Monthly, 2018, 44(8):1094-1103(in Chinese).
[39] 郭岗岗. 临近空间艇载声波测风技术[D]. 北京:中国科学院大学, 2018:1-31. GUO G G. Study on near space wind measurement by airship acoustic technic technology[D]. Beijing:University of Chinese Academy of Sciences, 2018:1-31(in Chinese).
[40] 吴小翠, 王一伟,黄晨光,等. 飞艇大攻角绕流气动特性模拟及湍流模型与参数影响研究[J]. 工程力学, 2014, 31(8):24-31. WU X C, WANG Y W, HUANG C G, et al. Aerodynamic simulation of airship ambient flow with high attack angles and analysis with turbulence models and parameters[J]. Engineering Mechanics, 2014, 31(8):24-31(in Chinese).
[41] 张澜川, 孟军辉,吕明云. 平流层飞艇机载风速测量方法[J]. 科技导报, 2017, 35(2):80-86. ZHANG L C, MENG J H, LYU M Y. Stratospheric airship airborne velocity measurement[J]. Science and Technology Review, 2017,35(2):80-86(in Chinese).
[42] 张石玉, 付增良,赵俊波,等. 临近空间低速飞行器风速仪研制及其在低温低压风洞中的标定试验[J]. 实验流体力学, 2017, 31(2):81-85. ZHANG S Y, FU Z L, ZHAO J B, et al. Development of near-space-vehicle anemometer and calibration tests in low-temperature-low-static-pressure wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2):81-85(in Chinese).
[43] CHRISTOPHER S. High altitude airship station keeping and launch model development using output from numerical weather prediction models[D]. West Lafayette, IN:Purdue University, 2008:1-17.
[44] UNTCH A, HORTAL M. A finite-element scheme for the vertical discretization of the semi-Lagrangian version of the ECMWF forecast model[J]. Quarterly Journal of the Royal Meteorological Society, 2004, 130(599):1505-1530.
[45] KIM D, JIN C, HO C, et al. Climatological features of WRF-simulated tropical cyclones over the western North Pacific[J]. Climate Dynamics,2015, 44(11):3223-3235.
[46] PANCHEVA D, MUKHTAROV P, SISKIND D, et al. Global distribution and variability of quasi 2 day waves based on the NOGAPS-ALPHA reanalysis model[J]. Journal of Geophysical Research:Space Physics, 2016, 121(11):11422-11449.
[47] BORN R D, SCHWAGER M. Riding an uncertain wind field:Receding horizon tree search planning with opportunistic sampling for an autonomous weather balloon[C]//AIAA SciTech Forum. Reston,VA:AIAA, 2019.
[48] RAMESH S, LIM K, LEE H. Reduced order modeling of stratospheric winds and its application in high altitude balloon trajectory simulations[J]. Journal of Applied Meteorology and Climatology, 2017,56(6):1753-1766.
[49] ROOHOLAH N, KARBASSI A, ASHRAFI K, et al. Development and application of reduced-order neural network model based on proper orthogonal decomposition for BOD 5 monitoring:Active and online prediction[J]. Environmental Progress and Sustainable Energy, 2013, 32(1):120-127.
[50] 李魁, 邓小龙,杨希祥,等. 基于本征正交分解的平流层风场建模与预测[J]. 北京航空航天大学学报, 2018, 44(9):2013-2020. LI K, DENG X L, YANG X X, et al. Modeling and prediction of stratospheric wind field based on proper orthogonal decomposition[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9):2013-2020(in Chinese).
[51] 中国特种飞行器研究所. 一种新型可变体飞艇:CN104590533A[P]. 2015-05-06. China Special Vehicle Research Institute. A new variable airship:CN104590533A[P]. 2015-05-06(in Chinese).
[52] VOSS P, RIDDLE E. Altitude control of long-duration balloons[J]. Journal of Aircraft, 2005, 42(2):478-482.
[53] KAYHAN Ö, YÜCEL Ö, HASTAOGLU A. Simulation and control of serviceable stratospheric balloons traversing a region via transport phenomena and PID[J]. Aerospace Science and Technology, 2016,28(3):534-541.
[54] DEVAUL R, TELLER E, BIFFLE C, et al. Altitude control via rotation of balloon to adjust balloon density:U.S. Patent 8733697[P]. 2014-05-27.
[55] YANG Y, WU J, ZHENG W. Design, modeling and control for a stratospheric telecommunication platform[J]. Acta Astronautica, 2012, 80:181-189.
[56] 陈声麒, 周萌. "Google Loon"高空超压气球网络技术综述[J]. 西安航空学院学报, 2017, 35(3):25-29. CHEN S Q, ZHOU M. Study on Google Loon high-altitude super pressure balloon network project[J].Journal of Xi'an Aeronautical University, 2017, 35(3):25-29(in Chinese).
[57] SAITO Y, AKITA D, FUKE H, et al. Properties of tandem balloons connected by extendable suspension wires[J]. Advances in Space Research, 2010,45:482-489.
[58] NOCK K, AARON K, HEUN M, et al. Aerodynamic and mission performance of a winged balloon guidance system[J]. Journal of Aircraft, 2007, 44(6):1923-1938.
[59] YODER C, WAGHELAY R, GEMMERZ T. On performance of passively-guided balloon systems for earth and extra-terrestrial applications[C]//AIAA Balloon Systems Conference.Reston,VA:AIAA, 2017.
[60] 张晶敏, 陆宇平,刘家宁. 平流层长航时气球轨迹控制系统研究[J]. 飞机设计, 2007, 27(2):21-24. ZHANG J M, LU Y P, LIU J N. Research on trajectory control systems for stratospheric long duration balloons[J]. Aircraft Design, 2007, 27(2):21-24(in Chinese).
[61] 常晓飞, 白云飞,符文星,等. 基于平流层特殊风场的浮空器定点方案研究[J]. 西北工业大学学报, 2014, 32(1):12-17. CHANG X F, BAI Y F, FU W X, et al. Research on fixed-point aerostat based on its special stratosphere wind field[J]. Journal of Northwestern Polytechnical University,2014, 32(1):12-17(in Chinese).
[62] SMITH I, LEE M. The hisentinel airship[C]//7th AIAA Technology, Integration and Operations Conference. Reston,VA:AIAA, 2007.
[63] LIN K, ZHENG Z, WU Z, et al. Path following of a stratospheric satellite by the aid of wind currents[J/OL]. (2018-11-16)[2019-01-23]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering,http://doi.org/10.1177/0954410018811414.
[64] WYNSBERGHE E, TURAK A. Station-keeping of a high-altitude balloon with electric propulsion and wireless power transmission:A concept study[J]. Acta Astronautica, 2016, 128:616-627.
[65] RAMESH S, MA J, LIM K, et al. Numerical evaluation of station-keeping strategies for stratospheric balloons[J]. Aerospace Science and Technology, 2018, 80:288-300.
[66] 王益平, 周飞,徐明. 临近空间浮空器区域驻留控制策略研究[J]. 中国空间科学技术, 2018, 38(1):63-69. WANG Y P, ZHOU F, XU M. Research on control strategy of territory-hovering aerostat in near space[J].Chinese Space Science and Technology, 2018, 38(1):63-69(in Chinese).
[67] 邓小龙, 李魁,于春锐,等. 基于准零风层的新型临近空间浮空器区域驻留研究[J]. 国防科技大学学报, 2019, 41(1):5-13. DENG X L, LI K, YU C R, et al. Station-keeping performance of a novel near space aerostat in quasi-zero wind layer[J]. Journal of National University of Defense Technology, 2019, 41(1):5-13(in Chinese).
[68] 邓小龙, 丛伟轩,李魁,等. 基于风场综合利用的新型平流层浮空器轨迹设计[J]. 宇航学报, 2019, 40(7):748-757. DENG X L, CONG W X, LI K, et al. Trajectory design of a novel stratospheric aerostat based on comprehensive utilization of wind fields[J]. Journal of Astronautics, 2019, 40(7):748-757(in Chinese).
[69] 李魁, 邓小龙,杨希祥,等. 基于平流层风场预测的浮空器轨迹控制研究[J]. 北京航空航天大学学报, 2018,45(5):1008-1018. LI K, DENG X L, YANG X X, et al. Modeling and prediction of stratospheric wind field based on proper orthogonal decomposition[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018,45(5):1008-1018(in Chinese).
[70] QIANG L,WU Z,ZHU M, et al, A comprehensive numerical model investigating the thermal-dynamic performance of scientific balloon[J]. Advances in Space Research, 2014, 53(2):325-338.
[71] DU H, LI J, ZHU W, et al. Flight performance simulation and station-keeping endurance analysis for stratospheric super-pressure balloon in real wind field[J]. Aerospace Science and Technology, 2019, 86:1-10.
Outlines

/